
Performance Analysis of Lightweight Object
Detection Networks on On-Device NPU for

Security-Critical Industrial Applications
Hyunwoo Kim

Regional ICT Research Section
ETRI

Daejeon, Republic of Korea
kim.hw@etri.re.kr

Sung Jae Yoon
Regional ICT Research Section

ETRI
Daejeon, Republic of Korea

sj.yoon@etri.re.kr

Munyoung Lee
Regional ICT Research Section

ETRI
Daejeon, Republic of Korea

munyounglee@etri.re.kr

Seung Hyub Jeon
Regional ICT Research Section

ETRI
Daejeon, Republic of Korea

shjeon00@etri.re.kr

Shin Yuk Kang
Regional ICT Research Section

ETRI
Daejeon, Republic of Korea

ameba@etri.re.kr

Kyu Sung Lee
Regional ICT Research Section

ETRI
Daejeon, Republic of Korea

kyusung.lee@etri.re.kr

Abstract—AI-based machine vision technologies have been
widely applied in various domains, including semiconductor
manufacturing, display inspection, autonomous driving, and
defense surveillance, to enhance productivity and ensure oper-
ational safety. However, these applications often involve sensitive
data, necessitating on-device inference rather than cloud-based
processing. On-device environments impose strict constraints
on computational resources, power consumption, and thermal
dissipation, making the adoption of lightweight AI models and
low-power Neural Processing Units (NPUs) essential for efficient
execution. To provide practical guidelines for model selection
and deployment strategies across application domains, this
study systematically analyzes the performance of representative
lightweight object detection models on an on-device NPU. The
analysis includes network architecture examination, inference
performance prediction through NPU simulation, and empirical
performance measurement on an NPU System-on-Chip (SoC).

Index Terms—On-device NPU, Lightweight Object Detection,
Security-Critical, SSD, YOLO.

I. INTRODUCTION

In recent years, artificial intelligence (AI)-based machine
vision technologies have played a pivotal role in diverse
industrial sectors, enabling advances in quality control, de-
fect detection, and situational awareness, thereby contributing
to improved productivity and operational safety. Representa-
tive application domains include semiconductor manufacturing
processes, display panel inspection, environmental perception
for autonomous vehicles, smart city video monitoring, medical
image analysis and defense and surveillance systems. These

This work was supported by the Technology Innovation Program (Develop-
ment and Practice of an On-device AI Functionality and Performance Testing
Framework based on NPU, RS-2025-02307650, 50%) funded by the Ministry
of Trade, Industry & Energy (MOTIE, Korea) and ETRI grant funded by the
Korea government (25ZT1100, 25YT1100, 50%).

applications often involve data that are sensitive or confiden-
tial, where external leakage could result in severe economic,
social, or safety-related consequences. Consequently, there
is a rapidly growing demand for on-premise and on-device
AI inference, rather than transmitting data to the cloud for
processing.

On-device inference environments are subject to stringent
constraints in terms of computational resources, power con-
sumption, thermal dissipation, and physical footprint. As a
result, the development of lightweight AI models and com-
pact, low-power Neural Processing Units (NPUs) capable of
executing such models efficiently has become essential. To
address these needs, extensive research has been conducted
in lightweight model architecture design [1]–[3], computation
optimization [4]–[6], and on-device NPU architecture design
[7], [8]. However, the requirements for analytical accuracy,
processing latency, and power consumption vary across appli-
cation domains, and the performance characteristics of even
the same lightweight model may differ depending on hardware
architecture and memory hierarchy design. In security-critical
domains, selecting the optimal model–hardware combination
that satisfies performance, latency, and power constraints with-
out compromising accuracy becomes essential. This require-
ment, in turn, necessitates quantitative performance analysis.

This study systematically evaluates the performance of
representative lightweight object detection models on an on-
device NPU, targeting deployment in security-sensitive in-
dustrial environments such as semiconductor manufacturing.
The evaluation encompasses network architecture analysis,
inference performance prediction through on-device NPU
simulation, and empirical performance measurements on an
NPU System-on-Chip (SoC). Based on the results, practical
guidelines are provided for model selection and deployment

949979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

Fig. 1. NPU architecture

strategy formulation tailored to specific application domains.

II. ON-DEVICE NEURAL PROCESSING UNIT

This study employed an NPU SoC designed for on-device
inference of convolutional neural network (CNN)-based mod-
els to conduct performance analysis. The NPU processes
network inference operations using 4-bit or 8-bit integer
arithmetic to improve power, performance, and area (PPA) ef-
ficiency as well as DRAM bandwidth utilization. Accordingly,
model quantization to 8-bit or 4-bit precision is required.

The NPU core comprises a Convolution Engine, a Depth-
wise Convolution Engine, and a Vector Engine, and includes
on-chip buffers for high-speed access to weights, activations,
and temporal data. The Convolution Engine handles both
standard convolution and pointwise convolution operations,
while the Vector Engine performs elementwise addition. The
NPU adopts a dual-core architecture and connects to other
on-chip IP blocks via an AXI bus.

The SoC integrates a Cortex-A53 ARM core and an Ad-
vanced DMA controller for data transfer, interfaced with 2
GB of 32-bit LPDDR4X DRAM. Operating at 1.45 GHz, the
NPU delivers 4 TOPS per core, providing a total throughput
of 8 TOPS in the dual-core configuration.

III. LIGHTWEIGHT OBJECT DETECTION MODEL

The SSDLite [5], YOLO-v2, and YOLO-v3 [9], [10] archi-
tectures are employed in this study, as they are widely adopted
in lightweight NPU environments owing to their compact
model size, low computational complexity, and favorable accu-
racy–efficiency trade-off. For NPU inference, both activations
and weights are quantized to 8-bit integers. All models are
trained on the PASCAL VOC 2007 dataset [11]. For SSDLite,
two input resolutions are evaluated: SSDLite300 (300× 300)
and SSDLite512 (512 × 512). The detection performance,

(a) SSDLite300

(b) YOLO-v2

(c) YOLO-v3

Fig. 2. Lightweight object detection network architectures

measured in terms of mAP, for each model in both FP32 and
INT8 precision is presented in Table I.

TABLE I
ACCURACY OF NETWORKS TRAINED ON VOC2007 DATASET (MAP)

Bit Precision SSDLite300 SSDLite512 YOLO-v2 YOLO-v3
FP32 0.703 0.744 0.735 0.757
INT8 0.696 0.738 0.734 0.758

The SSDLite architecture utilized in this work is based on
the detection network of MobileNetV2 [5], and Fig. 2 (a)
illustrates the SSDLite300 model with an input resolution of
300 × 300. SSDLite512 differs only in the input size and
the spatial resolution of each layer, while maintaining the
same overall network topology. The SSDLite models adopt
MobileNetV2 as the backbone and utilize a total of six feature
maps for object detection. The YOLO models employed in this
study are YOLO-v2 and YOLO-v3, which were introduced
around the same period as SSDLite and exhibit comparable
accuracy, thereby serving as baselines for comparison. The
architectures of YOLO-v2 and YOLO-v3 are depicted in Fig. 2
(b) and (c), respectively. YOLO-v2 employs the Darknet-19
backbone, resulting in a shallower and simpler structure than
SSDLite, whereas YOLO-v3 adopts the Darknet-53 backbone,
yielding a deeper and more complex architecture. In addition,

950

TABLE II
INT8 QUANTIZED NETWORK MODEL SIZES (MB)

Component SSDLite300 SSDLite512 YOLO-v2 YOLO-v3
Input 0.26 0.75 0.49 0.49
Output 0.21 0.59 0.02 0.25
Activation 13.55 37.18 18.13 54.11
Weight 3.70 3.58 64.03 58.82

TABLE III
OPERATION COUNTS OF NETWORK MODELS (MOPS).

DW = DEPTH-WISE, PW = POINT-WISE

Operation SSDLite300 SSDLite512 Yolo-v2 Yolo-v3
Conv. 38.88 113.25 16,917.44 34,491.45
DW Conv. 52.11 137.48 – –
PW Conv. 597.27 1,539.95 553.78 3,095.80
Add. 0.40 1.13 – 15.92
Total 747.82 1,922.78 17,644.27 37,603.17

a simplified version of YOLO-v3 is used in this study, in which
the 19th and 20th convolutional layers (13×13×1024×1024)
of the detection head are removed. Since the detection head
accounts for approximately 75% of the total parameters, this
modification substantially reduces the model size.

The parameter size and operation count of each model are
summarized in Tables II and III, where the operation count
accounts only for the weighted layers and the addition opera-
tions in the residual structures. The model size of SSDLite is
considerably smaller than that of YOLO because it employs
depthwise separable convolutions. For activations, SSDLite
also requires less memory for the same reason; however, due
to its shallower network depth, YOLO-v2 generates fewer
activations than SSDLite512. Compared with SSDLite300,
SSDLite512 produces a much larger number of activations
because of its higher spatial resolution, while its weight size
is slightly smaller. Although the same model architecture is
used and thus the weight size should ideally be identical, the
auxiliary convolution structures introduced to accommodate
the difference in spatial resolution make the SSDLite512
architecture slightly more compact, leading to a smaller weight
size. In contrast, YOLO-v2 has a substantially larger detection
head, resulting in more weights than even the deeper and more
complex YOLO-v3.

The operation count increases in the order of SSDLite300,
SSDLite512, YOLO-v2, and YOLO-v3, with the YOLO mod-
els requiring several times more operations than SSDLite. This
is primarily due to the use of depthwise separable convolutions
in SSDLite, which substantially reduce the overall number
of operations. In addition, it can be observed that pointwise
convolutions dominate the operations in SSDLite, whereas
standard convolutions account for the majority of operations
in the YOLO models.

IV. EXPERIMENTS

A. Experimental Environment

To evaluate NPU performance according to the character-
istics of object detection networks, inference was conducted
on both an NPU simulator and an NPU SoC. Quantization

Fig. 3. Model sizes (KB) and DMA transfer time (µs)

and compilation of the trained network models, as well as
NPU-based inference simulation, were performed using the
NPU software toolkit. The NPU simulator estimates inference
performance based on the compiled network model and the
modeled NPU architecture. The NPU inference performance
was measured using the TOPST AI-G board [12], which is an
on-device–level single board computer (SBC) operating on a
5 V, 5 A power supply.

B. Data Transfer Time Analysis

To analyze the data transfer latency of the NPU with
respect to network model size, the time required for Direct
Memory Access (DMA) transfers within the NPU was mea-
sured through simulation. Table IV presents the DMA transfer
times and data sizes between DRAM and the NPU on-chip
buffer, excluding the latency of NPU command transfers. As
expected, DMA size and transfer time exhibit a proportional
relationship. Since SSDLite models contain substantially fewer
weights and activations than YOLO models, their DMA sizes
and transfer times are correspondingly several times smaller.

Fig. 3 illustrates the relationship between network model
size and DMA transfer time. The bars represent the total size
of weights, activations, inputs, and outputs for each model,
whereas the lines denote the DMA execution times of the
models. For DMA read operations, the DMA transfer time
is proportional to each of the weight, activation, and input
sizes in the network model. However, although the total weight
and activation size of YOLO-v2 is only about twice that
of SSDLite512, its DMA read time is approximately 11.5
times longer. This discrepancy can be attributed to the fact
that YOLO-v2 has roughly 17.9 times more weights than
SSDLite512 while consisting of far fewer layers, resulting
in exceptionally large weights per layer. Consequently, the
limited capacity of the on-chip memory cannot accommodate
the entire weight of each layer, leading to frequent DMA reads.

951

TABLE IV
DMA EXECUTION TIMES (µS) AND TRANSFER SIZES (KB) OF NETWORK MODELS

Category Type SSDLite300 SSDLite512 Yolo-v2 Yolo-v3
DRAM Read Wgt & Act 688 (5657) 1337 (11496) 7322 (67405) 9385 (86412)

Input 87 (361) 202 (824) 139 (568) 262 (1066)
Sum 775 (6017) 1539 (12319) 7461 (67973) 9647 (87479)

DRAM Write Act 63 (565) 407 (3725) 1772 (16377) 1692 (15701)
Output 22 (188) 43 (383) 2 (21) 24 (222)
Sum 85 (752) 450 (4108) 1775 (16398) 1716 (15923)

Total 860 (6770) 1990 (16428) 9235 (84372) 11363 (103402)

TABLE V
EXECUTION TIMES OF COMPUTATION ENGINES (µS)

Engine Core SSDLite300 SSDLite512 Yolo-v2 Yolo-v3
Conv. 0 478 977 6621 15946

Engine 1 457 986 6096 15290
DW-C 0 282 698 4 0
Engine 1 261 690 3 0
Vector 0 12 34 11 333
Engine 1 12 33 11 331
Total 0 773 1709 6636 16279

1 729 1710 6111 15621
Max 773 1710 6636 16279

For DRAM write operations, output data are written only
once at the end of inference; thus, output size and transfer time
are directly proportional. In contrast, activation writes exhibit a
different pattern. Between SSDLite300 and SSDLite512, the
activation size increases by a factor of 2.75, yet the DMA
write time grows by about 6.44 times. This can be attributed to
the weight-stationary dataflow of the NPU, where limited on-
chip buffer capacity significantly increases the DRAM write
frequency for activation data. Comparing SSDLite512 with
YOLO-v2, the total activation size is halved, but the write
time doubles because the large per-layer weights of YOLO-v2
occupy most of the on-chip memory, leaving insufficient space
for activations. Finally, in the comparison between YOLO-
v2 and YOLO-v3, the activation size triples while the write
time increases only slightly, as YOLO-v3 has a much deeper
architecture with smaller per-layer weights, allowing more
activations to be stored on-chip.

C. Computation Time Analysis

To assess the impact of both inter-model variations and
the intra-model distribution of operation types on the NPU’s
execution time, simulations were performed in which the
execution time was measured individually for each operation
type. Table V presents the execution time of each NPU
computation engine, while Fig. 4 shows the operation count
of each model and the corresponding NPU execution time on
a logarithmic scale. It can be observed that standard convo-
lutions and pointwise convolutions account for the majority
of the operation count, and consequently, the convolution
engine responsible for processing these operations dominates
the overall execution time. As the operation count of a model
increases, the execution time also increases in an approxi-
mately linear manner; however, the growth in execution time is

Fig. 4. Execution times (µs) and operation counts (KOps) by operation type

TABLE VI
EXECUTION TIMES (MS) AND NPU UTILIZATION (%) OF NETWORK

MODELS

Case SSDLite300 SSDLite512 Yolo-v2 Yolo-v3
Simulation 1.540 3.463 11.261 24.376
Measured (NPU) 2.000 4.280 12.370 28.490
NPU utilization 21.48 26.37 58.40 58.40

less pronounced than the growth rate of the operation count.
This indicates that the resource utilization efficiency of the
NPU improves as the model size increases. An exception is
YOLO-v3, in which the growth in execution time exceeds
the growth in operation count when compared with YOLO-
v2. A detailed explanation of this phenomenon is provided in
Section IV-D. YOLO-v2, owing to its simplified architecture
without separable depthwise convolutions and residual blocks,
exhibits an operation count of zero for these components. Con-
sequently, the execution times of the depthwise convolution
engine and the vector engine are expected to be zero; however,
small non-zero values were observed, as these engines were
utilized to process miscellaneous operations.

D. Total Execution Time Analysis

To facilitate a comparison of overall execution time across
models, measurements were carried out through simulation as
well as on a board incorporating an NPU SoC. Table VI and
Fig. 5 present the simulated NPU total execution time, the exe-

952

Fig. 5. Relationship among operations count, execution time, and NPU
utilization

cution time measured on the NPU SoC, and the corresponding
NPU utilization. In the simulation results, the total execution
time was observed to be slightly shorter than the simple sum
of the DMA transfer time and computation time, because
portions of DMA transfers and computations were executed
concurrently on separate hardware modules. While the total
execution time measured on the NPU SoC deviated slightly
from the simulation results, the discrepancy was sufficiently
small to validate the reliability of the simulation outcomes.

Overall, as the model size and operation count increased,
the total execution time also grew approximately linearly.
However, as analyzed in Section IV-C, the rate of increase
in the execution time was mitigated by the efficient utilization
of NPU resources achieved through dataflow control. When
comparing SSDLite512 with YOLO-v2, the operation count
differs by a factor of 9.2, whereas the actual execution time
differs by only 2.8 times. This discrepancy results from
the significant increase in NPU utilization, which rose from
26.37% to 58.4%. Within each model family, the total exe-
cution time scaled approximately linearly with the increase
in operation count (e.g., SSDLite300 versus SSDLite512, and
YOLO-v2 versus YOLO-v3). However, despite the substantial
difference in operation count between YOLO-v2 and YOLO-
v3, NPU utilization did not improve. This is attributable to the
fact that the additional operations primarily resulted from an
increased number of layers, which are executed sequentially
and therefore do not contribute to improved utilization.

V. CONCLUSION

This study systematically analyzes the inference perfor-
mance of representative lightweight object detection models
on an on-device NPU, with the aim of providing practi-
cal guidelines for model selection and deployment strategies
in application-specific scenarios, particularly within security-
critical industrial environments such as semiconductor manu-
facturing. Both SSDLite and YOLO models were evaluated
using NPU simulation and on-chip inference on the NPU
SoC hardware (i.e., the TOPST AI-G platform), accompanied
by a quantitative analysis of the correlations among network
complexity, DMA transfer load, computational engine uti-
lization, and overall inference latency. Experimental results

demonstrated that, although larger model sizes and operation
counts increased the computational workload and execution
time, the utilization of NPU computation engines improved
correspondingly, thereby moderating the growth rate of latency
and enhancing overall computational efficiency. Furthermore,
scaling up the model size led to substantial variations in
the DRAM access volume for parameters and activations,
primarily determined by the NPU’s on-chip buffer capac-
ity constraints and dataflow policy. The differences between
simulation and hardware measurements remained within an
acceptable margin, while the performance trends with respect
to model size and operation count were consistent, confirming
the validity of the simulation results. The findings of this work
provide a practical basis for the design of model architectures
and deployment strategies that balance accuracy, latency, and
energy efficiency in security-sensitive industrial applications.

REFERENCES

[1] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[2] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[3] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2704–2713,
2018.

[4] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4510–4520, 2018.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision, pp. 21–37, Springer, 2016.

[7] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[8] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, et al., “Ten lessons
from three generations shaped google’s tpuv4i: Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pp. 1–14, IEEE, 2021.

[9] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7263–7271, 2017.

[10] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[11] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010. The
VOC2007 dataset is described as part of the Pascal VOC Challenge.

[12] TOPST, “Ai-g: Edge ai-focused single board computer.”
https://topst.ai/product/g/ai, 2025.

953

