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Abstract—In wireless systems, orthogonal frequency-
division multiplexing (OFDM) is often used because it
can handle channel fading well. To detect the transmitted
signals, receivers usually use methods like least squares
(LS) or minimum mean square error (MMSE). MMSE
gives better results than LS, but it still makes errors,
especially when there is noise. In this work, we improve
signal detection by combining MMSE with a deep neural
network (DNN). First, we use MMSE to estimate the
received symbols. Then, we use a DNN to refine these
estimates and reduce errors. The DNN takes the MMSE
output as input and learns to predict the original signal
more accurately. We test our method using both binary
phase-shift keying (BPSK) and quadrature phase shift
keying (QPSK) modulation in an OFDM system over
different signal-to-noise ratios (SNRs). Our results show
that the MMSE + DNN approach gives lower bit error
rates (BER) than using LS or MMSE alone. This shows
that deep learning (DL) can help improve signal detection
when used with traditional methods.

Index Terms—MMSE estimation, Deep Neural Networks
(DNN:s), signal detection, and OFDM systems

I. INTRODUCTION

Reliable signal detection is a critical task in modern
wireless communication systems. Among these systems,
orthogonal frequency-division multiplexing (OFDM) has
become widely adopted due to its robustness against
multipath fading and its spectral efficiency [1]. However,
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the performance of OFDM heavily depends on accurate
detection of transmitted symbols at the receiver side,
especially in the presence of noise and fading [2].
In conventional receivers, detection typically follows
channel estimation using methods such as least squares
(LS) or minimum mean square error (MMSE) [3]. LS
estimation is simple and does not rely on channel statis-
tics, but it often suffers from poor performance under
noisy conditions. MMSE significantly improves over
LS by exploiting noise variance and statistical channel
knowledge [4] [S]. For many years, MMSE has been
the standard approach to enhance LS and enable more
accurate signal recovery.

Recently, deep learning (DL) has gained attention for
signal processing tasks, including channel estimation and
signal detection [6]. Researchers have shown that neural
networks can learn complex mappings and outperform
traditional algorithms in challenging scenarios. For in-
stance, Ye et al. [3] used a deep neural network (DNN)
to jointly perform channel estimation and detection in
OFDM systems. Other works such as [7] and [8] intro-
duced end-to-end neural detection architectures or cas-
caded networks that learn corrections over conventional
estimators like Zero-Forcing or MMSE.

Despite these advances, many DL based detectors ignore
the useful structure that conventional methods provide
[7]. Instead of replacing MMSE entirely, we believe that
MMSE can offer a strong starting point for learning-
based refinement. In this work, we integrate MMSE
equalization with a DNN that enhances symbol estimates
in a data-driven manner. Our approach first uses MMSE
to equalize the received signal and then applies a fully
connected DNN to improve the output. The DNN learns
to denoise and correct the MMSE output, leading to
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lower bit error rates (BER).

We implement and test this system in an OFDM sim-
ulation framework using quadrature phase shift keying
(QPSK) modulation and frequency-selective fading. We
compare various DNN architectures using different ac-
tivation functions and optimizers. Our results show that
the MMSE+DNN hybrid approach consistently outper-
forms both MMSE and LS detectors across a wide range
of SNR values. The DNN acts as a nonlinear post-
equalizer that effectively learns the mapping between
noisy estimates and clean symbols. This work contributes
to the growing body of literature on combining model-
based and data-driven methods in wireless communi-
cation. Rather than replacing traditional techniques, we
show that DL can complement and enhance them when
properly integrated.

II. SYSTEM MODEL

In this section, we present the system model as
shown in Fig. 1. for the simulated OFDM transmis-
sion chain, incorporating QPSK modulation, frequency-
selective fading, MMSE equalization, and a DNN-based
symbol refinement stage.

A. OFDM Transmission

We consider a single-antenna OFDM system with N
subcarriers. Each OFDM frame comprises N complex-
valued QPSK symbols generated from 2N random bits.
The baseband transmitted OFDM signal is obtained
by applying an N-point inverse fast fourier transform
(IFFT) to the modulated symbol vector x € CV,
resulting in the time-domain vector s = IFFT(x). To
mitigate inter-symbol interference (ISI), a cyclic prefix
(CP) of length L, is appended to each OFDM symbol,
forming the transmit signal § € CN+Lep,

B. Channel Model

The wireless channel is modeled as a frequency-
selective fading channel with complex Gaussian coeffi-
cients. In our simulation, the frequency-domain channel
is assumed flat per subcarrier and modeled as:

h:[h17h27"'7hN}T7 hkNCN(O71)a

The channel is constant over the duration of each OFDM
frame and perfectly known at the receiver for the MMSE
equalizer.

C. Receiver Model and Channel Equalization

At the receiver, the CP is removed and an fast
fourier transform (FFT) is applied to recover the received
frequency-domain symbol vector:

y =FFT(r) (2)

where 7 € CV is the received OFDM symbol after CP
removal. The received vector is modeled as:

y=hox+n 3)

where © denotes element-wise multiplication, and n ~
CN(0,0°I) is the complex additive white Gaussian
noise (AWGN) vector. We first estimate the transmitted
symbol vector « using the MMSE equalizer [9]:

H*
apMSE — myk, k=1,...,N (4
After applying the MMSE equalizer to obtain an initial
estimate of the transmitted symbols, we enhance the
detection performance using a DNN trained to refine
symbol estimates and suppress residual noise and dis-
tortion.

III. HYBRID MMSE AND DNN-BASED
ESTIMATION AND DETECTION

A. DNN-Based Signal Detection Enhancement

To further refine the MMSE output, we apply a fully
connected feedforward DNN. The DNN is trained to map
the imperfect MMSE estimates :EkMMSE to the original
transmitted symbols zj. Each input sample to the DNN
consists of the real and imaginary parts of the MMSE
estimate:

up = [éR (;%glMSE) ’% ((%}:;IMSE)} ; (5)

and the corresponding output is trained to match the real
and imaginary parts of the true QPSK symbol:

v = [R(zk), S(2r)] - (6)

B. Deep Neural Network Architecture

In this section, we discuss DNN models. DL is a mod-
ern technique widely used in communication systems.
The DNN consists of multiple hidden layers that enable
it to make accurate predictions. Each layer contains
multiple neurons. Increasing the number of hidden layers

k=1,...,N.can improve the accuracy of the results.The output is

calculated by summing the weighted outputs of neurons
in each layer, which helps the model predict a non-
linear function. Common non-linear activation functions
include ReLU, Sigmoid, and GELU. The ReLU (recti-
fied linear unit) function is defined by the output range
[0,00), and its formula is given by:

ReLU(z) = max(0, z) @)

The sigmoid activation function is often used at the
output layer because it produces values in the range of
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Fig. 1: Block diagram of the OFDM system with neural network-based receiver.

0 to 1, which is suitable for many applications such as
binary classification. The sigmoid function is defined as:

¢ (ngZ)) -— izg” ®)

where z§l> represents the output vector of the i-th sample

at layer [ of the DNN, and ¢(-) denotes a nonlinear
activation function. The model uses the Adam optimizer,
which updates the model’s weights (parameters) to min-
imize the loss function during training.The MSE loss
function J(@)is used to guide the DL model toward
optimal performance, particularly under complex Gaus-
sian distributed channels and noise. It also serves as an
effective metric for evaluating how closely the estimated
bit stream matches the transmitted bit stream. The MSE
loss function is defined as:

=530

k=1

Jmse (0 v — 21,)> )

Here, Jumse(0), vk, and zj represent the MSE loss
function, the transmitted bits, and the predicted bits
generated by the DL model, respectively. Therefore, the
output of the network, denoted as zj, is a cascade of
nonlinear transformations applied to the input data I,
which can be mathematically expressed as:

2= f(u,0) = fED (fED (W) o)

Here, L represents the total number of layers in the
network, and 6 denotes the weights (parameters) of
the neural network. These parameters correspond to
the weights assigned to the neurons and must be opti-
mized prior to online deployment. Typically, the optimal
weights are learned using a training dataset with known
target outputs.

C. DNN Model Training

The models are trained by treating OFDM modulation
and wireless channels as black boxes. Traditionally,
researchers have developed various channel models that
accurately represent real-world channels based on statis-
tical properties. Using these models, training data can
be generated through simulation. In each simulation,
a random data sequence is first generated to repre-
sent the transmitted symbols, and an OFDM frame is
constructed by inserting a sequence of pilot symbols.
These pilot symbols must remain fixed during both
training and deployment. The current random channel is
then simulated according to the selected channel model.
The received OFDM signal is obtained by passing the
constructed OFDM frame through the simulated chan-
nel, which introduces channel distortion and noise.The
received signal is first processed using the LS estimation
technique, and the results are evaluated. Next, the MMSE
estimation method is applied, and its performance is also
assessed. A comparison between LS and MMSE shows
that MMSE provides improved results. These MMSE
estimates are then used as inputs to the DL model. In
this work, we propose a hybrid receiver that combines
MMSE equalization with a DNN to improve symbol
detection using data-driven learning. First, the received
signal is equalized using MMSE. Then, a fully connected
DNN refines the symbol estimates to reduce remaining
errors. The DNN is trained to minimize the difference
between its output and the original transmitted data.
The neural network used in this system has five layers,
including three hidden layers. For binary phase-shift
keying (BPSK) modulation, the hidden layers contain 64,
64, and 1 neuron(s), respectively. For QPSK modulation,
the layers have 128, 64, and 2 neurons. The input to
the model includes the real and imaginary parts of two
consecutive OFDM blocks, which contain both pilot and
data symbols. To handle the input efficiently, every 16
bits of transmitted data are grouped and processed by a
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separate trained model. The outputs from these models
are then combined to produce the final result. By learning
to clean and correct the MMSE estimates, the DNN
effectively BER.

IV. SIMULATION RESULTS

The simulation investigates the BER performance of
OFDM systems under BPSK and QPSK modulation
using three channel estimation techniques: LS, MMSE,
and MMSE enhanced with a DNN employing ReLU
activation. The experiments were conducted over a range
of SNR values from 10 dB to 30 dB with 10 Monte
Carlo runs for each point. The results clearly demon-
strate that MMSE outperforms LS in both BPSK and
QPSK scenarios due to its superior noise suppression
capabilities. Moreover, integrating a DNN with MMSE
further improves performance, especially at higher SNR
levels. For instance, at 30 dB SNR, the BER for BPSK
reduces from approximately 1.5 x 10~* (MMSE) to
below 1.0 x 10~* with MMSE+DNN. Similarly, QPSK
shows a reduction from around 9 x 10~* (MMSE) to
6 x 10~* using MMSE+DNN. These results validate

BER vs. SNR for OFDM (LS / MMSE / MMSE + DNN)

—e— BPSKLS
- BPSK MMSE
~¥— BPSK MMSE + DNN
—#— QPSKLS
-4~ QPSK MMSE
—e— QPSK MMSE + DNN

Bit Error Rate (BER)

10.0 125 15.0 17.5 20.0 225 25.0 275 30.0
Signal-to-Noise Ratio (SNR) in dB

Fig. 2: BER vs. SNR for OFDM using LS, MMSE, and
MMSE+DNN under BPSK and QPSK.

that the combination of MMSE estimation followed by a
learned DNN regression stage leads to a more accurate
symbol detection, thus improving the system’s overall
reliability. The BER performance trends for all methods
are illustrated in Fig. 2.

A. Effect of CP Length and DNN Activations on BER
Performance in OFDM

The performance evaluation of the QPSK-OFDM sys-
tem was conducted under two different CP lengths,
namely CP = 16 and CP = 32, to assess the impact of
channel estimation techniques and CP duration on BER.
As shown in Fig. 3, the LS estimator yields the highest
BER in both CP scenarios, indicating its vulnerability to
noise and its lack of statistical noise modeling. Although
it performs adequately at higher SNR values, the BER

remains significantly higher compared to MMSE and
MMSE+DNN. In contrast, the MMSE estimator shows
considerable improvement by utilizing the noise vari-
ance in its formulation, offering lower BER across all
SNRs. Additionally, the MMSE performance is further
improved when the CP is extended from 16 to 32, sug-
gesting that a longer CP helps reduce ISI and enhances
channel estimation accuracy.

The most notable improvement is observed when

BER vs. SNR for QPSK OFDM (CP=16 vs CP=32)

-
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Fig. 3: BER vs. SNR for QPSK-OFDM with LS, MMSE,
and MMSE+DNN under CP lengths 16 and 32.

MMSE is followed by a DNN. This hybrid approach
leverages the nonlinear learning capabilities of the neural
network to refine the symbol estimates obtained from
MMSE, correcting residual estimation errors. As a result,
the MMSE+DNN model consistently achieves the lowest
BER for all tested SNR values. Particularly at high
SNRs, the BER reduction is substantial, confirming the
ability of the DNN to approximate the ideal QPSK
constellation mapping even in the presence of channel
distortion. Furthermore, the comparison between CP=16
and CP=32 shows that the longer CP results in slightly
better performance for all three methods, particularly for
MMSE and MMSE+DNN, as it effectively mitigates ISI.
In summary, the simulation results confirm that the
MMSE+DNN model with CP = 32 provides the best
overall performance in terms of BER. It demonstrates
the strength of combining statistical estimation with
data-driven deep learning techniques. The results also
highlight the importance of CP length, showing that
increasing the CP improves robustness against ISI at the
cost of spectral efficiency. These findings, illustrated in
Fig. 3, support the integration of machine learning-based
post-equalization in OFDM systems and suggest that
careful tuning of physical layer parameters such as CP
length can further enhance system reliability in practical
communication scenarios.
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V. CONCLUSION

In conclusion, this paper presented a DL based ap-
proach for signal detection in OFDM systems by com-
bining MMSE estimation with DNN. First, we applied
the MMSE technique to obtain more accurate signal
estimates. These results were then used as input to the
DNN model, which was trained to predict the transmit-
ted symbols. This hybrid MMSE-DNN method showed
very good performance and achieved significantly better
results than traditional LS and MMSE techniques and
the DNN model alone. Simulation results confirm that
our deep learning model performs especially well in the
presence of severe distortion and interference. For future
work, we plan to conduct more detailed evaluations and
use real wireless channel data to retrain or fine-tune
the model. This will further improve its performance in
practical scenarios and support its deployment in real-
world communication systems.
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