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Abstract—This paper revisits the design of the LTE and 5G
NR Primary Synchronization Signals (PSS) and clarifies several
misconceptions and answers key questions not easily addressed
elsewhere. We show where their characteristic behavior—sharp
autocorrelation peaks and low cross-correlations—actually comes
from. We also justify frequency-domain mapping over time-
domain mapping in OFDM systems. We show that the current
3GPP PSS choices are effective yet not optimal. We also analyze
Zadoff-Chu sequences of composite length and demonstrate how
specific root selections can produce undesirable cross-correlation
peaks, providing guidance for safe root choices. The results offer a
unified, implementation-oriented view of existing PSS designs and
practical insights for synchronization sequence design in beyond-
5G/6G systems.

Index Terms—PSS, synchronization, 3GPP, LTE, 5G NR,
beyond-5G/6G, Zadoff-Chu.

I. INTRODUCTION

The Primary Synchronization Signal (PSS) is a dedicated
downlink signal transmitted by a base station to enable user
equipment (UE) to achieve initial time and frequency synchro-
nization. Detecting the PSS is the first step a UE takes during
cell search, as it provides the timing reference and contributes
to cell identity (ID) detection [1].

Given its critical role, the PSS must be carefully designed to
enable robust and efficient detection. Desirable characteristics
of PSS sequences include a sharp autocorrelation peak, low
cross-correlation between different PSS sequences, constant
amplitude in the frequency domain, and low peak-to-average
power ratio (PAPR) in the time domain. Moreover, PSS
sequences should be robust to noise, multipath propagation,
and frequency offset [2], [3].

We consider the PSS sequences defined in the 3rd Gen-
eration Partnership Project (3GPP) [4] and explore how the
desirable characteristics are achieved. Our aim is to clarify
often-overlooked aspects that can be confusing for those
unfamiliar with the topic. In doing so, we hope to address
some fundamental questions that are often left unanswered and
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Fig. 1. Frequency-domain structure of the 128-subcarrier window containing
the LTE PSS.

clarify common misunderstandings about the PSS sequences
in 3GPP.

Our objective is not to provide a comprehensive introduction
to PSS sequences in 3GPP. We aim to help readers not only
understand the current PSSs but also provide insights that
will be valuable when designing synchronization sequences
for beyond-5G/6G mobile communication systems.

II. THE STATE-OF-THE-ART PSS

In 3GPP, Long-Term Evolution (LTE), including its Ad-
vanced version (LTE-A), and 5G New Radio (NR) each define
their own PSS.

A. LTE PSS

In LTE, the PSS is placed at the center of the frequency
spectrum, and it spans 62 subcarriers symmetrically centered
around the DC subcarrier as illustrated in Fig. 1 [5]. These
62 subcarriers lie within a 72-subcarrier synchronization re-
gion, which corresponds to six resource blocks (RBs) in the
frequency domain.

The PSS is derived from length-63 Zadoff-Chu sequences
defined as:

su[n] = e−j
πun(n+1)

63 , 0 ≤ n < 63, (1)

where u ∈ {25, 29, 34} is the root index, identifying one of
the three physical-layer cell identity groups N

(2)
ID ∈ {0, 1, 2}.

The root index u is chosen such that gcd(u, 63) = 1, ensuring
that the sequence is a valid Zadoff-Chu sequence [6]. Only 62
elements of the length-63 sequence are actually mapped onto
subcarriers. Since the DC subcarrier is not used, the central
element su[31] is omitted.
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Fig. 2. The structure of 5G NR SSB.

B. 5G NR PSS

In 5G NR, the PSS is transmitted as part of a Syn-
chronization Signal Block (SSB), which groups together the
PSS, the Secondary Synchronization Signal (SSS), and the
Physical Broadcast Channel (PBCH). This grouping supports
a structured initial access procedure that is designed to operate
with directional transmissions [7].

Fig. 2 illustrates the frequency-domain allocation of the
PSS within a 5G NR SSB. The SSB spans 240 subcarriers
(equivalent to 20 RBs) inside a 256-point FFT grid. The PSS
occupies 127 subcarriers, centered within the 240-subcarrier
SSB.

The PSS is constructed using a length-127 m-sequence
generated by a linear feedback shift register (LFSR) with the
generator polynomial x7+x4+1. The initial state of the LFSR
is defined as

[s[6], s[5], · · · , s[0]] = [1, 1, 1, 0, 1, 1, 0],

which produces the binary sequence s[k]. This sequence is
mapped to Binary Phase Shift Keying (BPSK) symbols using
the transformation d[k] = 1 − 2s[k]. To support N

(2)
ID ∈

{0, 1, 2}, the PSS sequences are defined by applying cyclic
shifts to the base sequence as follows:

d0[k] = 1− 2s[k]

d1[k] = 1− 2s[(k + 43) mod 127] (2)
d2[k] = 1− 2s[(k + 86) mod 127]

III. FREQUENTLY ASKED QUESTIONS & COMMON
MISCONCEPTIONS

A. The Correlation Properties of PSS Sequences

A common misconception is that the correlation properties
of LTE and 5G NR PSS sequences are due to the unique
properties of Zadoff-Chu sequences and m-sequences. We
often see statements like “Zadoff-Chu sequences are used as
PSS because they produce a sharp correlation peak”. However,
those statements are only partially true—in reality, those
unique properties play surprisingly minor roles in determining
the correlation properties of the PSS sequences.

The inner product of any two valid Zadoff-Chu sequences
is 1/

√
N (approximately zero; nearly orthogonal), where N is

the length of the Zadoff-Chu sequences. Zadoff-Chu sequences
are also polyphase sequences.

The three LTE PSS sequences are obtained by mapping
three length-63 Zadoff-Chu sequences, each generated by a
distinct root index, in the frequency domain. Since DFT and
IDFT are unitary transforms (with appropriately defined inner
product operators), the inner product is preserved between
the time and frequency domains [8]. As a result, the corre-
sponding time-domain sequences are also nearly orthogonal—
an important property for synchronization. Because Zadoff-
Chu sequences are polyphase, power is evenly distributed
across the 62 subcarriers, offering robustness in frequency-
selective fading channels. Additionally, the polyphase nature
of these sequences gives rise to the sharp autocorrelation peaks
observed in LTE PSS. (See Section III-B for more details.)

However, being a polyphase sequence is not a unique fea-
ture of Zadoff-Chu sequences. Any BPSK- or QPSK-mapped
OFDM symbol also qualifies as a polyphase sequence and will
exhibit a sharp autocorrelation peak similar to that of the LTE
PSS. Moreover, constructing a set of three (strictly) orthogonal
sequences is relatively straightforward.

In 5G NR, the three PSS sequences are obtained by applying
cyclic shifts to a single m-sequence of length 127. The
result is, again, a set of polyphase sequences1 mapped in
the frequency domain, with inner products of exactly 1/N
between any pair, making them nearly orthogonal. Other
properties of the m-sequence play little role. As in LTE,
these characteristics lead to sharp autocorrelation peaks and
robustness in frequency-selective fading channels.

The above explanation showed that the correlation prop-
erties of 3GPP PSS sequences can be understood without
using the special mathematical features of Zadoff-Chu or
m-sequences. Contrary to common belief, the correlation
properties of PSS sequences do not arise from the unique
mathematical features of Zadoff-Chu or m-sequences. As
shown in [9], even random phase sequences can achieve
correlation performance comparable to 5G NR PSS. This
demonstrates that the observed properties fundamentally stem
from general characteristics, such as polyphase structure and
the use of frequency-domain mapping, rather than the unique
characteristics of Zadoff-Chu or m-sequences. These aspects
will be discussed in greater detail in the next section.

B. Why Frequency Domain Mapping?

As shown in Figs. 1 and 2, the PSS symbols in both
LTE and 5G NR are mapped directly onto subcarriers in
the frequency domain, rather than in the time domain. This
may seem surprising, since the Zadoff-Chu sequences and
m-sequences used for the PSSs in LTE and 5G NR are
well known for their desirable correlation properties, and the
correlation is performed in the time domain. Mapping these
sequences directly in the frequency domain, therefore, appears
counterintuitive.

So, why frequency domain mapping? Because it solves
practical problems while introducing minimal overhead.

1Even though m-sequences are not usually described as polyphase se-
quences, they are a special case.
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Fig. 3. Periodic cross-correlation of time-domain-mapped 5G NR PSS
sequences. Normalized by the length of m-sequence. Peaks at 43, 86, and 43
(i.e., 86− 43 = 43).

1) Overhead:
The overhead is minimal because the IFFT is already

available as a standard component in OFDM systems.
2) Efficient resource allocation:
Frequency-domain mapping enables efficient resource al-

location by allowing precise control over which subcarriers
are used, making spectral management easier and avoiding
interference with other signals or reserved bands.

3) Guaranteed autocorrelation properties:
Frequency-domain mapping guarantees excellent autocor-

relation properties. According to the modulus-one sequence
theorem and its corollary (see below), any modulus-one se-
quence mapped in the frequency domain yields ideal pe-
riodic autocorrelation (and consequently excellent aperiodic
autocorrelation) characteristics in the time domain [10]. Both
Zadoff–Chu sequences and m-sequences used in 3GPP PSS
are polyphase, and therefore modulus-one sequences. The
sharp peaks of autocorrelation do not originate from the unique
correlation property of Zadoff–Chu or m-sequences, but rather
from the fact that they satisfy the modulus-one condition. This
represents the most significant benefit of frequency-domain
mapping.

4) Improved cross-correlation characteristics:
Frequency-domain mapping significantly improves the time-

domain cross-correlation characteristics.
The three sequences in the 5G NR PSS are constructed using

cyclic shifts of a single base m-sequence, as defined in (2).
Since they are cyclic shifts of one another, if they are used
as time-domain sequences, their periodic cross-correlations
would produce peaks at shift lags of ±43 and ±86, as shown
in Fig. 3

These cross-correlation peaks are problematic as they
may lead to false detection events during synchronization.
Frequency-domain mapping eliminates these artifacts. As
shown in Fig. 4, the time-domain periodic cross-correlation
peaks are no longer present when the sequences are mapped
in the frequency domain.

Unfortunately, Zadoff-Chu sequences are an exception—
frequency-domain mapping does not improve their time-
domain periodic cross-correlation, leaving spurious peaks that
can trigger false detections. See Section III-D for the details.

5) Design adaptability:
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Fig. 4. Time-domain periodic cross-correlation characteristics of frequency-
domain-mapped 5G NR PSS sequences.

The lengths of sequences used in the PSSs of 3GPP differ
from the number of samples in a single OFDM symbol
in the time domain. Frequency-domain mapping, combined
with sequence conditioning (e.g., zero padding, puncturing,
etc.), ensures that the resulting time-domain sequences are
compatible with the OFDM frame structure. For example,
in 5G NR, the PSS uses a length-127 m-sequence, which is
significantly shorter than the 256 samples in a single OFDM
symbol. Addressing this mismatch entirely in the time domain
would be cumbersome and inelegant.

Theorem 1 (modulus-one sequence): Let x[0], x[1], · · · ,
x[N − 1] ∈ C and let X[k] be its N -point DFT,

X[k] =

N−1∑
n=0

x[n]e−j 2πkn
N ,

x[n] =
1

N

N−1∑
k=0

X[k]ej
2πkn

N .

Define the periodic autocorrelation of X by

rXX [�] =
N−1∑
m=0

X[m+ �]X∗[m] (indices mod N).

The periodic autocorrelation of X is ideal with peak N2 (that
is, rXX [0] = N2 and rXX [�] = 0 for every nonzero �) if and
only if x has constant modulus, i.e., |x[n]| = 1 for all n.

Proof: We first establish the identity

rXX [�] = N · DFT{|x[n]|2}[�]. (3)

Derivation of (3). Expand X[m + �] and X∗[m] and sum
over m:

rXX [�] =
∑
m

(∑
n

x[n]e−j
2π(m+�)n

N

)(∑
p

x∗[p]ej
2πmp

N

)

=
∑
n,p

x[n]x∗[p]e−j 2π�n
N

∑
m

e−j
2πm(n−p)

N

=
∑
n,p

x[n]x∗[p]e−j 2π�n
N δ[n− p]

= N
∑
n

|x[n]|2e−j 2π�n
N

= N · DFT{|x[n]|2}[�],
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where δ[n− p] is the Kronecker delta sequence.
(⇒) If |x[n]| = 1 for all n, then |x[n]|2 = 1, so

DFT{|x[n]|2}[�] =
N−1∑
n=0

e−j 2π�n
N = Nδ[�].

By (3), rXX [�] = N · (Nδ[�]) = N2δ[�], i.e., ideal with peak
N2.

(⇐) If |rXX [�]| = N2δ[�], take the IDFT of both sides and
use (3):

N |x[n]|2 = IDFT{rXX}[n] = 1

N

N−1∑
�=0

N2δ[�]ej
2π�n
N = N.

Hence |x[n]|2 = 1 for all n, so |x[n]| = 1 for all n. This
proves the equivalence.

Corollary 2: Let X[0], X[1], · · · , X[N − 1] ∈ C and let
x[n] be its N -point IDFT,

x[n] =
1

N

N−1∑
k=0

X[k]ej
2πkn

N ,

X[k] =

N−1∑
n=0

x[n]e−j 2πkn
N .

Define the periodic autocorrelation of x by

rxx[m] =
N−1∑
n=0

x[n+m]x∗[n] (indices mod N).

The periodic autocorrelation of x is ideal with peak 1 (that is,
rxx[0] = 1 and rxx[m] = 0 for every nonzero m) if and only
if X has constant modulus, i.e., |X[k]| = 1 for all k.

The proof of Corollary 2 can be obtained by a minor
modification of the proof of the theorem.

Note that this theorem is a special case of Wiener-Khinchin
theorem, which states that the power spectral density of a
wide-sense stationary random process is equal to the Fourier
transform of its autocorrelation function [11].

This is a very strong result because it establishes not only
that modulus-one sequences in the frequency domain produce
ideal periodic autocorrelation in the time domain, but also
that only modulus-one sequences in the frequency domain can
achieve this property.

C. Optimality of 3GPP PSS sequences

A common misconception is that the 3GPP PSS sequences
are optimized for mobile communications. This is not the
case. As discussed in Section III-A and III-B, any polyphase
sequence—even a random-phase sequence—can perform com-
parably to the current 3GPP PSS sequences in terms of
correlation properties.

The 3GPP PSS sequences are derived from mathematical
sequences. However, mathematical sequences are not designed
with synchronization of radio frames in mind. They offer
limited design freedom, and often result in synchronization se-
quences with limited performance [9]. Moreover, as discussed
in Section III-A, the unique features that originally made these

mathematical sequences appealing do not always contribute to
the overall performance of the resulting PSS sequences.

In contrast, Kwak et al. showed that explicitly optimizing
the sequences for synchronization yields PSS sequences with
substantially better correlation behavior (see Fig. 2(a) vs. Fig.
2(c) in [9]).

That said, mathematical sequences are not without merit.
For example, the excellent PAPR characteristics of LTE PSS
sequences stem from properties of Zadoff–Chu sequences (i.e.,
the DFT of a Zadoff-Chu sequence is another Zadoff-Chu
sequence [12]). Interestingly, those same properties also lead
to poor cross-correlation performance of LTE PSS sequences,
as discussed in detail in Section III-D.

D. Zadoff-Chu sequences of Composite Length

Let xu(n) be the length-N Zadoff-Chu sequence defined as

xu(n) =

{
e−j

πun(n+1)
N , N : odd

e−j πun2

N , N : even
, (4)

where 0 ≤ n < N and 0 < u < N . If u and N share a
common factor c > 1, the phase of xu(n) becomes periodic
with period N

c over 0 ≤ n ≤ N − 1, producing nonideal
periodic autocorrelation with spurious peaks at nonzero lags.
Thus, gcd(u,N) = 1 is a necessary condition for a valid
Zadoff-Chu root. Thus, Zadoff-Chu sequences of prime length
are of special interest because they maximize the number of
admissible roots [1].

When cross-correlations between distinct roots is important,
however, root validity alone is not sufficient. The periodic
cross-correlation between xu1

(n) and xu2
(n) contains the

factor (u1−u2) in the exponent; if gcd(|u1−u2|, N) > 1, the
phase again exhibits a shorter periodicity and spurious peaks
appear—analogous to the autocorrelation case.

Consider the root indices {25, 29, 34} of Zadoff-Chu se-
quences of length 63 = 32 · 7 (i.e., composite) used in the
LTE PSS as an example. Each index is valid because it is
coprime to 63. However, 34 − 25 = 9 and gcd(9, 63) > 1,
so the periodic cross-correlation between x25(n) and x34(n)
shows spurious peaks (Fig. 5(b)). By contrast, 29 − 25 = 4
and 34− 29 = 5 are coprime to 63, and their periodic cross-
correlations do not exhibit such peaks (Fig. 5(a) and (c)).

Mapping the sequences in the frequency domain does not
help in this case. The DFT of a Zadoff-Chu sequence is also
a Zadoff-Chu sequence:

X[k] = DFT{xu[n]}[k] ∝ x∗
u′ [k]

where u′ is the multiplicative inverse of u modulo 63 [12],
[13]. Thus, by mapping Zadoff–Chu sequences with root
indices {25, 29, 34} in the frequency domain, we obtain time-
domain sequences that are also Zadoff–Chu sequences, with
root indices given by the multiplicative inverses of {25, 29, 34}
modulo 63, namely

(25−1, 29−1, 34−1) ≡ (58, 34, 13) (mod 63).

The difference of 58 and 13, the multiplicative inverses of 25
and 34 modulo 63, respectively, is again not coprime to 63, and
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Fig. 5. Periodic cross-correlation of time-domain-mapped Zadoff-Chu se-
quences. N = 63, u ∈ {25, 29, 34}. Normalized by N .

thus the periodic cross-correlation between the corresponding
sequences will also generate spurious peaks (Fig. 6(b)). This
is formalized in the following proposition.

Proposition 3: Let N > 1 and let a, b be integers with
gcd(a,N) = gcd(b,N) = 1. Let a′ and b′ be the multiplicative
inverses of a and b modulo N . Then,

gcd(a− b,N) = gcd(a′ − b′, N).

Proof: Since gcd(a,N) = 1 and gcd(b,N) = 1, we have
gcd(ab,N) = 1. Hence, for every d | N , d | ab(a′ − b′) iff
d | (a′ − b′); therefore

gcd(a′ − b′, N) = gcd(ab(a′ − b′), N). (5)

Also,

ab(a′ − b′) ≡ b(aa′)− a(bb′) ≡ b− a (mod N), (6)

because aa′ ≡ bb′ ≡ 1 (mod N). If two integers are congru-
ent mod N , they differ by a multiple of N , so they have the
same gcd with N . Thus, using (5) and (6), gcd(a′ − b′, N) =
gcd(b− a,N) = gcd(a− b,N).

Why, then, choose {25, 29, 34} together? Because with
N = 63, there is no triple of valid root indices whose
pairwise differences are all coprime to 63. Although there
are ϕ(63) = 36 admissible roots (where ϕ(·) is Euler’s
totient function), at most pairs—not triples—can satisfy the
periodic cross-correlation requirement. Indeed, valid roots are
coprime to 63 = 32 · 7, so every root u satisfies u ≡ 1 or 2
(mod 3), where “a ≡ b (mod 3)” means a and b have the
same remainder when divided by 3. Take any roots u1, u2,
u3. By the pigeonhole principle (placing three numbers into
two residue classes mod 3), at least two share the same residue
modulo 3, so their difference is a multiple of 3 and thus not
coprime to 63. Hence no triple can satisfy the cross-correlation
requirement.

So, the better question to ask would be Why choose length
63? Had N been prime (e.g., N = 61), any three distinct roots
would be pairwise coprime in difference, yielding ideal peri-
odic autocorrelations and cross-correlations without spurious
peaks. The the additional two subcarriers obtained by using
N = 63 offer little performance benefit in this context.

We do not argue against using Zadoff-Chu sequences of
composite length. They are suitable when the chosen con-
figuration meets the requirements of the application and its
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Fig. 6. Time-domain periodic cross-correlation of frequency-domain-mapped
Zadoff-Chu sequences. N = 63, u ∈ {25, 29, 34}.
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Fig. 7. Time-domain periodic and aperiodic autocorrelations of the 5G NR
PSS sequence d0[k], mapped in the frequency domain as defined in (2). Panel
(a) exhibits the ideal correlation because d0[k] is a modulus-one sequence.
The lags for the periodic autocorrelation in (a) range from −63 to 63, whereas
those for the aperiodic autocorrelation in (b) range from −126 to 126. The
two autocorrelations are identical at zero lag; however, the sidelobes of the
aperiodic autocorrelation become more pronounced as |lag| increases.

operating conditions. Our point is that prime lengths generally
make those requirements easier to meet—especially when
multiple roots are involved—whereas composite lengths call
for more careful selection and verification. When implementa-
tion constraints favor a composite length, it remains reasonable
to use it, provided the design is validated against the system’s
performance targets.

E. Periodic vs. aperiodic correlation

Detecting the PSS is the first step in cell search. Because
the PSS has not yet been detected, the UE does not know the
system timing (e.g., the OFDM-symbol boundary). Lacking
this timing, the UE must use aperiodic correlation to find the
PSS. Thus, PSS detection depends on aperiodic-correlation
performance rather than periodic-correlation performance.

Nevertheless, we analyze periodic correlation, which is
justified because periodic correlation largely reflects aperiodic
behavior, especially when the lag is small (See Fig. 7). In most
cases, properties observed in periodic correlation are observed
in aperiodic case. When the distinction is required, we specify
periodic or aperiodic; otherwise we omit the prefix.

Fig. 8 presents the aperiodic cross-correlation of the
frequency-domain-mapped 5G NR PSS sequences, while
Fig. 4 shows the corresponding periodic cross-correlation.
Both figures exhibit the same qualitative behavior—uniformly
low cross-correlation with no spurious peaks across sequence
pairs. This agreement in behavior is more evident at small
lags. Similarly, Fig. 6 presents the aperiodic cross-correlation
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Fig. 8. Time-domain aperiodic cross-correlation characteristics of the
frequency-domain mapped 5G NR PSS sequences.
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Fig. 9. Time-domain aperiodic cross-correlation characteristics of the
frequency-domain mapped Zadoff-Chu sequences.

characteristics of the frequency-domain-mapped Zadoff-Chu
sequences (LTE PSS), while Fig. 9 shows the corresponding
periodic cross-correlation. Again, the spurious peaks observed
in Fig. 6(b) are also observed in Fig. 9(b).

IV. CONCLUSION

This paper set out to dispel recurring misconceptions about
the 3GPP Primary Synchronization Signals and to articulate
points that are often glossed over in the literature. In this
paper, we clarified where the PSS correlation properties truly
come from, explained why the sequences are mapped in the
frequency domain (including the role and significance of the
modulus-one theorem), showed that the current PSS choices
are not optimal and can be improved with optimization under
the same constraints, and highlighted how sequence length
affect cross-correlation behavior of Zadoff-Chu sequences.

We showed that the sharp autocorrelation peaks do not
arise from special features of Zadoff–Chu or m-sequences
themselves. They follow from using polyphase sequences
together with the DFT/IDFT structure. In this view, Zadoff-
Chu and m-sequences are just convenient instances of a
broader class whose correlation properties are explained by
their unit magnitude rather than by details unique to those
sequence families.

We then explained why the PSS is mapped in the frequency
domain. Beyond aligning naturally with an OFDM modem
and simplifying resource allocation, frequency-domain map-
ping guarantees excellent autocorrelation peaks and generally
improves cross-correlation performance. The modulus-one the-
orem makes this precise.

Next, we showed that today’s PSS selections are effective
but not optimal. With objective functions defined on the
actual OFDM grid, direct optimization can yield sequences
with improved correlation properties under the same practical
constraints.

Finally, we emphasized that for Zadoff-Chu sequences,
length and root selection matter. For composite lengths (e.g.,
N = 63 in LTE), some root combinations can produce
spurious cross-correlation peaks. We explained how these
peaks arise and why, at composite lengths, avoiding them is
inherently difficult.

We hope this work has achieved its aims and serves as a
useful reference for understanding current PSSs and guiding
synchronization sequence design in beyond-5G/6G systems.
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