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Abstract—In the 4th Industrial Revolution, predictive 
maintenance is a key strategic element that predicts equipment 
failure or status in real-time by collecting relevant data from sensors. 
However, missing sensor data occurs frequently, leading to enormous 
opportunity costs. Therefore, there is a growing need for robust 
models that can maintain high accuracy and stable performance even 
when missing data occurs. Against this backdrop, language models 
have achieved remarkable success in natural language processing 
tasks through the innovative architecture of Transformers, and their 
context-based learning effect has been widely proven in other 
domains such as tabular data and time-series analysis. In this paper, 
we propose a Hybrid architecture with a machine learning teacher 
and a Language Model Embedding-based student (HyLME) to 
enable accurate and robust predictive maintenance even in the 
presence of missing data. HyLME is a hybrid learning approach that 
fuses text embeddings from language models and learns knowledge 
from tree-based machine learning models. Additionally, we 
implemented a masking scenario based on feature importance to 
simulate missing data conditions. In the results of comparative 
experiments, HyLME achieved an average accuracy of 0.83207 
across all scenarios. This performance is 15.99% higher than the 
average accuracy of the comparison models, which indicates that the 
proposed architecture is effective in performing accurate and robust 
predictions in sensor missing data situations.  

Keywords— predictive maintenance, missing data processing, 
language model embeddings, hybrid deep learning and machine 
learning, knowledge distillation  

I. INTRODUCTION 
Predictive maintenance is a key strategy that maximizes 

productivity and efficiency by monitoring internal and 
external data from sensors attached to equipment in real time, 
predicting potential failures in advance, or accurately 
assessing the current state to perform maintenance at the 
appropriate time [1,2]. However, in some environments, 
outliers or missing data frequently occurs in the collected data 
due to various factors such as equipment lifespan limitations 
caused by aging and physical failures caused by external 
shocks. Shutting down and repairing the equipment whenever 
missing data occur incurs enormous opportunity costs, and 
situations may unavoidably arise in which sensor replacement 
is difficult. If these problems accumulate, they leads to a 
serious situation where it becomes impossible to accurately 
predict the state of the equipment [3,4]. Therefore, the need 
for a robust model that maintains high accuracy and consistent 
performance is emerging, even when missing data occurs 
within a sequence of data. 

Amidst the growing demand for research in the 4th 
Industrial Revolution and predictive maintenance, language 
models are gaining prominence as a rapidly emerging form of 
artificial intelligence. Language models began with the 
innovative Transformer architecture, and they have evolved 

into various Large Language Models (LLMs) such as BERT 
[5], GPT-2 [6], and Llama 3 [7]. By understanding the 
meaning of words and their contextual relationships in 
sentences, these models have demonstrated successful results 
in Natural Language Processing (NLP).  

These Transformer-based language models possess the 
ability to understand contextual relationships, namely, the 
relationships between data points within vast datasets, and to 
robustly capture complex patterns. As a result, they have 
expanded into domains beyond NLP and have contributed to 
a paradigm shift. In particular, Transformers and LLMs have 
been actively explored recently in traditional machine learning 
and deep learning tasks, such as structured tabular data and 
time-series analysis. Based on this background, we raise the 
following two research questions regarding our study 

1) In sensor-missing environments for predictive maintenance, 
can hybrid ML/DL models maintain high accuracy despite 
progressive sensor failures? 

2) Can the text embeddings from pre-trained language models 
contextually capture inter-sensor relationships and accurately project 
complex data patterns? 

In this paper, we explore the two aforementioned research 
questions and propose a Hybrid architecture with a machine 
learning teacher and a Language Model Embedding-based 
student (HyLME) to perform accurate and robust predictive 
maintenance in environments where sensor missingness 
frequently occurs. The proposed architecture serializes sensor 
data as text and extracts embeddings using a pre-trained 
language model. These embeddings are then fused with the 
original data and processed through a ResidualMLP head (a 
neural network with residual connections). In this process, the 
model is trained through knowledge distillation technique, 
where a tree-based machine learning model serves as the 
teacher and the ResidualMLP serves as the student. This 
approach leverages the contextual learning capability of the 
language model to capture inter-sensor relationships and the 
robustness of a tree-based model against missing data. 

The main contributions of this work are as follows: 

 HyLME: This study demonstrates that the proposed 
hybrid teacher-student architecture, which combines 
pre-trained language model embeddings with machine 
learning and deep learning models, is effective in 
achieving accurate and robust predictive maintenance 
even in the presence of missing sensor data. 

 Masking Scenario: To ensure accurate and fair 
evaluation under sensor missing conditions, a masking 
scenario was constructed based on feature importance. 
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 Experimental Validation: Through comparative 
experiments with ten baseline models on the MPTMS 
dataset, HyLME achieved 15.99% higher average 
accuracy, demonstrating the effectiveness of the 
proposed framework in handling missing sensor data. 

II. RELATED WORKS 

A. Predictive Maintenance and Handling Missing data  
The advancement of machine learning and deep learning 

has played a significant role in the progress of the 4th 
Industrial Revolution and predictive maintenance, leading to 
successful outcomes. Hermawan et al. [8] proposed a CLSTM 
architecture that combines CNN and LSTM to predict the 
Remaining Useful Life (RUL) of aircraft engines, successfully 
integrating important features from each structure and 
achieving high accuracy. Furthermore, Ghadekar et al. [9] 
proposed a machine learning-based anomaly detection model 
using XGBoost and Local Outlier Factor to detect failures and 
abnormal states in industrial equipment, demonstrating high 
accuracy and introducing SHAP to enhance explainability, 
thereby indicating the model’s applicability in real-world 
settings. However, in actual facilities, missing sensor data 
occurs frequently, and both studies have the limitation of not 
considering such missing data scenarios. 

To address missing data in tabular form, numerous studies 
have continuously explored methods of data interpolation and 
generation. Ba-Alawi et al. [10] and Lee et al. [11] utilized 
Auto Encoder and Variational Auto Encoder architectures, 
respectively, to learn from both incomplete and complete data 
in order to restore the missing data. Both studies commonly 
pointed out that traditional missing data processing methods, 
such as simple mean imputation or interpolation, have the 
limitation of failing to reflect the temporal characteristics and 
interrelationships within the data. Their proposed architectures 
demonstrated high accuracy by effectively generating normal 
data. 

The generation of missing data stems from the objective 
of accurately predicting with normal data. However, Caruso 
et al. [12] pointed out that conventional machine learning and 
deep learning models can only learn by replacing missing data 
in advance, and that the act of interpolating or generating 
missing data itself may cause information loss or bias. Caruso 
et al. proposed the NAIM, which is designed to learn 
effectively from incomplete data by disregarding missing data. 
NAIM treats missing data as a special token and ignores their 
influence within the Transformer’s attention mechanism. 
Moreover, it utilizes a regularization technique that randomly 
masks a subset of features during each training epoch, thereby 
inducing the model to learn generalized capabilities in the 
presence of missing data. This approach indicates that 
refraining from explicitly processing missing data can, in itself, 
serve as a novel means of improving generalization in 
predictive models. 

B. Language Models and Text Embeddings 
In a notable study on language model embeddings, Tang 

et al. [13], pointed out that most regression studies utilizing 
LLMs have focused on decoding-based approaches that 
generate tokens directly as outputs, while investigations 
employing embedding vectors directly remain insufficient. 
Additionally, traditional embedding approaches exhibit a 
steep performance drop when applied to high-dimensional 
table-column inputs. To mitigate this, Tang et al. serialized 

table data into string, extracted text embeddings using an 
LLMs, and fed them into an MLP regression head. Tang et al. 
proved that the LLM preserves Lipschitz continuity by not 
excessively expanding output distances relative to input 
distances, and they suggested that the core property of the 
embedding representation is its ability to maintain 
performance or exhibit only a gradual decline irrespective of 
input feature dimensionality. 

In addition, Kaur et al. [14] conducted the first study to 
leverage text embeddings from LLMs for time-series data. 
They pointed out that existing time-series analysis approaches 
using LLMs require fine-tuning with millions of parameters, 
which leads to high computational and memory costs, making 
them unsuitable for resource-constrained environments. They 
also raised questions about the effectiveness of directly 
applying LLMs to time-series data in terms of accuracy and 
efficiency. LETS-C, proposed by Kaur et al., serializes 
sequences into strings using digit-space tokenization, which 
preserves numerical continuity. It then extracts embeddings 
using a pretrained LLMs and trains a classifier composed of 
CNN and MLP structures. This approach is grounded in the 
capabilities of pre-trained LLMs, which, owing to their 
Transformer structures and context-based learning methods, 
can produce rich sequence representations and accurately 
capture the complex patterns and temporal dependencies in 
time-series data. Consequently, LETS-C has demonstrated 
remarkable results, achieving State-of-the-Art (SOTA) 
performance in benchmark experiments across various 
datasets. Additionally, through cosine similarity analysis of 
data samples represented as text embeddings, Kaur et al. 
proved that samples within the same class are located close to 
each other, while those from different classes are positioned 
farther apart. This finding suggests that text embeddings from 
LLMs are effective for time-series data. 

While these studies have made significant contributions to 
handling missing data and leveraging LLM embeddings 
separately, our work uniquely combines these approaches 
through knowledge distillation for robust predictive 
maintenance. This integration addresses the limitations of 
both approaches: the domain-specific knowledge gap in 
LLMs and the potential information loss in traditional missing 
data handling methods. 

III. METHODOLOGY 

A. HyLME: Intergration of Models Robust to Missing Data 
HyLME employs a hybrid architecture in the form of 

knowledge distillation [15] that learns both the text 
embeddings extracted from a pre-trained BERT [5] model and 
the logits of an XGBoost [16] model, which is a tree-based 
machine learning algorithm.  

BERT is trained with both the Masked Language Model 
technique, which learns local contextual information within a 
sentence, and the Next Sentence Prediction technique, which 
learns global contextual information between sentences. This 
training approach makes it possible to effectively capture 
complex semantic relationships between words and sentences. 
It has a characteristic where the overall interpretation of the 
context is not significantly affected, even if some words in a 
sentence are inappropriate, such as typos. This robustness to 
missing or corrupted text translates well to handling missing 
sensor readings in our application. 

This implies that even in the presence of missing data or 
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Fig. 1. Overview of a Hybrid architecture with a machine learning teacher and a Language Model Embedding-based student (HyLME). 

outliers, the inter-variable relationships can be preserved, and 
similar classes are expected to be projected into a shared 
embedding space. However, when applied to domains not 
covered by the pre-trained model’s knowledge base, a lack of 
domain-specific knowledge may occur, and the degradation in 
representational capacity can become more pronounced. 

To address this limitation, we incorporate XGBoost as a 
complementary model. XGBoost has a structure that learns by 
repeatedly partitioning the data into intervals, and it possesses 
a robust characteristic whereby the overall model structure 
and predictive performance are not significantly affected even 
in the presence of outliers or missing data in the input data. 

Accordingly, as shown in Fig. 1, this study adopts a 
knowledge distillation architecture in which the embeddings 
from the language model are fused with the original data as 
input, and the prediction signals from the tree-based machine 
learning model are used as supervised learning targets to learn 
the decision process. This approach is designed to precisely 
capture the relationships among variables in complex sensor 
data and to perform predictive maintenance robustly in the 
presence of missing data. 

B. Extracting Text Embeddings from Pre-trained Language 
Models 
Masking Scenario: In this study, a masking scenario is 

introduced in which a predetermined number of variables are 
forcibly set to “-1” according to each scenario, indicating 
missing values or sensor outliers and  thereby simulating a 
missing data environment. This simulates real-world sensor 
failure patterns that maintenance systems frequently encounter. 
This method is designed to train the model’s generalization 
performance under missing data conditions and to verify its 
robustness. 

Similarly, Caruso et al. [12] applied epoch-wise random 
masking to missing data, but the per-step resampling 
introduced additional computational cost. To mitigate this 
overhead, we randomly generate a single masking pattern at 
initialization and reuse it for all training iterations. 

This masking scenario operates differently between the 
training and testing phases. In the training phase, masking is 
applied randomly, whereas during testing variables are 
masked sequentially in descending order of XGBoost-derived 
feature importance so that we can directly observe the impact 
of losing the most critical sensors. The number of masked 
sensors in each scenario increases consistently as the scenario 
level increases. 

String Serialization: The sensor data preprocessed 
according to the masking scenario is used to extract text 

embeddings through a pre-trained language model (BERT). 
As shown in Fig. 1, the data input to the language model is 
converted into a string based on the digit-space tokenization 
strategy.  

This method, devised in the study by Kaur et al. [14], 
converts numerical values into integers at a precision of one 
decimal place and then represents each digit by separating 
them with spaces. For example, the value "49.99" is replaced 
with "4 9 9". 

In addition, the values between sensors are separated by 
commas, and the masked value “-1” is replaced with a special 
token “[M]”. The final constructed string is then converted 
into a token sequence through the pre-trained tokenizer of the 
language model and used for embedding extraction. 

Text Embedding Extraction: The text serialized through 
the digit-space tokenization and special tokens is used to 
extract text embeddings via a language model. In this study, 
embeddings are extracted using a pre-trained BERT, and the 
embedding extraction process is inspired by Tang et al. [13].  

Given an input string x, it is converted into a token 
sequence of length L, denoted as 𝑇𝑇 𝑇 𝑇𝑇(𝑥𝑥) = (𝑡𝑡�, 𝑡𝑡�, … , 𝑡𝑡�), 
using a pre-trained tokenizer. This token sequence is 
propagated through the Transformer structure of the language 
model, resulting in a hidden state 𝐻𝐻 𝐻 [ℎ�, ℎ�, … , ℎ�]� ∈
ℝ���, where d is the embedding dimension of the BERT (768). 
The final text embedding is obtained through mean pooling, 
as expressed in (1).  

𝜙𝜙(𝑇𝑇) = 1
𝐿𝐿
�ℎ�

�

���

∈ ℝ𝑑𝑑 (1) 

C. Machine Learning Teacher and Deep Learning Student 
The extracted text embedding is fused with the original 

data, where the smaller-dimensional input is zero-padded to 
match the larger dimension for alignment. Here, the fusion is 
performed through element-wise addition. This method is 
inspired by the study of Kaur et al., which reported that simple 
addition was more effective than concatenation. Following 
this approach, the present study also constructs the input data 
by adopting the fusion method of addition after dimensional 
alignment. 

This data is used as input to the ResidualMLP head for 
classification, and the training is performed using a knowledge 
distillation approach that learns the logits of XGBoost. In this 
architecture, the ResidualMLP acts as the student and 
XGBoost as the teacher, with the student learning from the 
knowledge of the teacher. XGBoost is used after being pre-
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trained on the corresponding dataset using the original input 
rather than the embedding. The loss function for training the 
ResidualMLP can be briefly represented as follows. Based on 
empirical evaluation, the hyperparameter T in (3) was selected 
to be 4.0, and λ in (4) was selected to be 0.5.  

𝐿𝐿�� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶, 𝐶𝐶�) (2) 

𝐿𝐿�� = 𝑇𝑇�� ∙ �𝐿𝐿(𝐶𝐶𝐶𝐶�𝐶𝐶�𝐴𝐴� �
𝑧𝑧�
𝑇𝑇�
� ��𝐶𝐶𝐶𝐶𝐶�𝐶𝐶�𝐴𝐴� �

𝑧𝑧�
𝑇𝑇�
�) (3) 

𝐿𝐿����� = (1 − 𝜆𝜆) ∙ 𝐿𝐿�� + 𝜆𝜆 𝜆𝜆𝜆 �� (4) 

IV. EXPERIMENTS 

A. Datasets  
To validate the predictive maintenance accuracy and 

robustness to missing data of the proposed architecture, the 
Multimodal Data for Predictive Maintenance of Transport 
Devices in Manufacturing Sites (MPTMS) [17], which 
consists of 13,121 sample sets collected from real-world 
manufacturing environments, was used. The MPTMS dataset 
consists of sensor data and thermal images for carbonization 
prediction, applicable in real manufacturing sites for 
semiconductors, displays, and automobiles. It is provided with 
labels for a total of four conditions, which are normal, caution, 
warning, and danger conditions. 

From this dataset, excluding the image data, data from 
eight types of sensors were extracted and used. The sensor 
data was restructured into a tabular format for processing. The 
sensors used include NTC, PM1.0, PM2.5, PM10, CT1, CT2, 
CT3, and CT4, and their correlations with the classification 
labels are shown in Fig. 2. In particular, a high degree of 
correlation was observed among the PM-series sensors, and a 
certain level of interdependence was also found among the 
CT-series sensors. 

The feature importance of the entire sensor dataset was 
calculated using the XGBoost model, and the results are 
presented in Fig. 3. A notable finding is that there is a 
significant drop after the top three sensors, suggesting that a 
small subset of sensors has a dominant impact on prediction 
performance. In this study, masking scenarios were applied to 
the MPTMS dataset, and comparative experiments were 
conducted by training both baseline models and HyLME. 

B. Baseline Competitive Models  
The baseline models were constructed using both 

methodologies adopted in previous studies and widely 
recognized SOTA models, Linear Regression [18], XGBoost 
[16], and Support Vector Machine (SVM) [19] are machine 
learning-based models that have demonstrated strong 
performance on tabular data. MLP [20] and ResidualMLP, 
which incorporates the idea of residual connections from 
ResNet [21], are basic deep learning model whose 
performance has already been proven in many fields. In 
addition, AutoEncoder [10], an unsupervised model that 
learns to compress input data into a latent space and 
reconstruct it, has been widely used as an approach for 
generating missing data. Finally, Transformer-based models 
known to achieve SOTA performance on tabular data, such as 
TabNet [22], TabTransformer [23], and FTTransformer [24], 
were also included for comparative experiments. 

C. Evaluation Metrics  
The evaluation metrics for the experimental results are 

accuracy, precision, recall, and F1-Score, and the formulas for 
each are defined in (5)-(8).  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
∑ 𝑇𝑇𝑇𝑇��
���

∑ (𝑇𝑇𝑇𝑇� + 𝐹𝐹𝐹𝐹� + 𝐹𝐹𝐹𝐹�)�
���

(5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� =
𝑇𝑇𝑇𝑇�

𝑇𝑇𝑇𝑇� + 𝐹𝐹𝐹𝐹�
, 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃����� =

1
𝐶𝐶
� 𝑇𝑇𝐶𝐶𝑃𝑃𝐴𝐴𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶�

�

���
(6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� =
𝑇𝑇𝑇𝑇�

𝑇𝑇𝑇𝑇� + 𝐹𝐹𝐹𝐹�
,  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅����� =

1
𝐶𝐶
� 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅�

�

���
(7) 

𝐹𝐹𝐹����� =
1
𝐶𝐶
�

2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�

�

���
(8) 

D. Results  
Quantitative Evaluation: As shown in Table 1, the 

proposed HyLME achieved the highest performance among 
all comparison models, with an average scenario accuracy of 
0.83207. Although the improvement over XGBoost, the 
second-best model, was relatively modest at approximately 
0.36%, this difference becomes more substantial in scenarios 
with multiple missing sensors. Specifically, the performance 
gains became more noticeable from Scenario 4 onward, where 
missing data began to affect the top three sensors identified by 
feature importance.  

The key point here is that, in Scenarios 4 through 7, 
HyLME achieved higher accuracies than XGBoost by 1.241%, 
0.383%, 0.481%, and 0.691%, respectively, with an average 
improvement of 0.699%, exceeding the overall average gain. 
These results suggest that HyLME presents a meaningful 
advancement in addressing the limitations of existing models 
under missing data conditions. 

Despite being a model renowned for achieving SOTA 
performance in numerous studies thanks to its robustness 
against outliers and missing data, XGBoost exhibited a decli 
ne in performance as the number of missing sensors grew. In 

Fig. 2. Correlation heatmap of the Multimodal Data for Predictive 
Maintenance of Transport Devices in Manufacturing Sites (MPTMS). 

Fig. 3. Feature importance of sensors in the MPTMS datasets. 
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TABLE I.  QUANTITATIVE STUDY RESULTS 

Models 
Accuracy of Masking Scenario 

0 1 2 3 4 5 6 7 Average 

LinearRegression 0.79934 0.49411 0.49580 0.49508 0.46345 0.45530 0.45530 0.45530 0.51421 

XGBoost 0.93392 0.92827 0.92642 0.92585 0.81983 0.79805 0.73850 0.56180 0.82908 

SVM 0.87470 0.85501 0.84589 0.84678 0.64491 0.61433 0.56261 0.50420 0.71855 

MLP 0.90036 0.88866 0.88091 0.87010 0.71752 0.71284 0.62667 0.50347 0.76257 

ResidualMLP 0.91932 0.91189 0.90116 0.88212 0.79377 0.75472 0.69590 0.54543 0.80054 

AutoEncoder (R) 0.85162 0.68372 0.53195 0.52945 0.31023 0.30353 0.31370 0.16242 0.59213 

AutoEncoder (L) 0.84622 0.84008 0.81548 0.78425 0.67872 0.63555 0.61578 0.49177 0.71348 

TabNet 0.88761 0.87801 0.87768 0.87502 0.72906 0.70179 0.54591 0.47684 0.74649 

TabTransformer 0.85646 0.86566 0.82072 0.77376 0.59981 0.63684 0.50258 0.45530 0.68889 

FTTransformer 0.91730 0.91496 0.90963 0.89285 0.81459 0.77441 0.69905 0.53929 0.80776 

HyLME (Ours) 0.93424 0.92730 0.92609 0.93005 0.83000 0.80111 0.74205 0.56568 0.83207 

TABLE II.  ABLATION STUDY RESULTS 

Models 
Average of Masking Scenario 

Acc P R F1 

MLP 0.76257 0.79902 0.70758 0.71509 

ResidualMLP 0.80054 0.81316 0.75925 0.76028 

ResidualMLP (KD) 0.81995 0.84366 0.77813 0.77989 

HyLME (w/o Fusion) 0.81867 0.81532 0.77281 0.77361 

HyLME (w/o KD) 0.83189 0.84534 0.79445 0.80002 

HyLME (Ours) 0.83207 0.85423 0.78957 0.79723 

 

contrast, our proposed model not only attained the highest 
initial performance but also delivered the top accuracy in all 
later scenarios, with the exception of Scenarios 1 and 2. 

Furthermore, the proposed model showed 3.01% higher 
accuracy than FTTransformer, a known SOTA model for 
tabular data that has a transformer structure similar to 
language models. In conclusion, our model recorded an 
average accuracy 15.99% higher than the average accuracy of 
0.71737 from the other models in the comparison group, 
excluding HyLME. This performance improvement supports 
the proposed architecture’s capability to handle missing data 
environments and demonstrates its effectiveness in enhancing 
both accuracy and robustness. Here, Fig. 4 represents the 
scenario-wise accuracy of each model, and the results 
presented in Table 1 and Fig. 2 were recorded by selecting the 
model with the highest average accuracy in each scenario.- 

Ablation Study: The HyLME architecture assumes that 
the pretrained language model, with its context-aware learning 
capabilities, can capture relationships among sensors and 
project instances belonging to the same class closer together 
in the embedding space. However, since it was not trained on 
the downstream task, the model aimed to alleviate the issue of 
knowledge deficiency by learning the logits from the tree-
based XGBoost model, which is robust to missing data. 

To demonstrate the effect of each component on model 
performance, an ablation study was conducted, with the 
results shown in Table 2. Primarily, the ResidualMLP was 
chosen over a MLP to mitigate the vanishing gradient problem 
and ensure stable training via residual connections. Based on 

accuracy, the ResidualMLP recorded a score of 0.80054, 
representing a 4.98% improvement compared to the MLP. 

When the text embedding from the language model was 
applied, an accuracy of 0.81867 was achieved, which is 2.26% 
higher than the result without it. Additionally, when the text 
embedding was fused with the original data, the performance 
improved by 3.92% compared to the standard ResidualMLP, 
demonstrates that the fusion led to better results. This indicates 
that training on the fused embeddings from the pre-trained 
language model is effective for improving performance. 

In addition, an accuracy of 0.81995 was achieved by 
training with knowledge distillation from XGBoost without 
incorporating language model embeddings, confirming the 
effectiveness of learning from a tree-based model. However, 
when the language model embeddings were first fused and 
then used in the knowledge distillation process, the accuracy 
improved to 0.83207, representing a 1.48% enhancement. 
These experimental results demonstrate that each component 
proposed in the HyLME architecture contributes effectively to 
improving predictive maintenance performance under missing 
data conditions. 

V. CONCLUSIONS 
In this paper, we proposed HyLME, a novel approach for 

robust predictive maintenance under missing sensor 
conditions. HyLME integrates text embeddings from pre-
trained language models with tree-based machine learning 
through knowledge distillation, effectively combining the 
contextual understanding capabilities of BERT with the 
robustness of XGBoost. Our approach serializes sensor data 

Fig. 4. Scenario-wise Accuracy Comparison of Baseline Models under 
Missing Sensor Conditions. 
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into text format using digit-space tokenization and extracts 
embeddings that capture inter-sensor relationships, which are 
then fused with original features and processed through a 
ResidualMLP student network guided by XGBoost teacher 
logits. 

Comprehensive experiments on the MPTMS dataset with 
13,121 real-world manufacturing samples demonstrated 
HyLME's effectiveness. The proposed method achieved an 
average accuracy of 83.21% across all missing data scenarios, 
outperforming ten baseline models by 15.99% on average. 
Notably, HyLME maintained superior performance stability 
as sensor failures increased, showing particular strength in 
scenarios where critical sensors were missing (maintaining 
over 80% accuracy with up to five missing sensors). The 
ablation study revealed that language model embeddings 
alone contributed a 14.74% improvement over traditional 
autoencoder approaches, validating our hypothesis that pre-
trained language models can effectively capture complex 
sensor relationships even in degraded conditions. 

Despite these promising results, we acknowledge several 
limitations. First, the knowledge distillation approach 
inherently bounds student performance by teacher capabilities, 
which may explain why HyLME's performance closely tracks 
XGBoost in certain scenarios. Second, our current approach 
does not explicitly model temporal dependencies in sensor 
data, focusing instead on inter-sensor relationships at 
individual time points. Third, computational overhead from 
text serialization and embedding extraction may limit real-
time deployment in resource-constrained environments. 

Future research will address these limitations through 
several directions: (1) exploring alternative knowledge 
transfer mechanisms that allow the student to surpass teacher 
performance, (2) incorporating temporal modeling through 
recurrent or attention-based architectures while maintaining 
robustness to missing data, and (3) validating generalization 
across diverse industrial datasets and sensor modalities. 
Additionally, we plan to analyze the learned embeddings to 
better understand which linguistic patterns correspond to 
sensor relationships, potentially leading to more interpretable 
predictive maintenance systems. 
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