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Abstract—In the 4th Industrial Revolution, predictive
maintenance is a key strategic element that predicts equipment
failure or status in real-time by collecting relevant data from sensors.
However, missing sensor data occurs frequently, leading to enormous
opportunity costs. Therefore, there is a growing need for robust
models that can maintain high accuracy and stable performance even
when missing data occurs. Against this backdrop, language models
have achieved remarkable success in natural language processing
tasks through the innovative architecture of Transformers, and their
context-based learning effect has been widely proven in other
domains such as tabular data and time-series analysis. In this paper,
we propose a Hybrid architecture with a machine learning teacher
and a Language Model Embedding-based student (HyLME) to
enable accurate and robust predictive maintenance even in the
presence of missing data. HyLME is a hybrid learning approach that
fuses text embeddings from language models and learns knowledge
from tree-based machine learning models. Additionally, we
implemented a masking scenario based on feature importance to
simulate missing data conditions. In the results of comparative
experiments, HyLME achieved an average accuracy of 0.83207
across all scenarios. This performance is 15.99% higher than the
average accuracy of the comparison models, which indicates that the
proposed architecture is effective in performing accurate and robust
predictions in sensor missing data situations.

Keywords— predictive maintenance, missing data processing,
language model embeddings, hybrid deep learning and machine
learning, knowledge distillation

[. INTRODUCTION

Predictive maintenance is a key strategy that maximizes
productivity and efficiency by monitoring internal and
external data from sensors attached to equipment in real time,
predicting potential failures in advance, or accurately
assessing the current state to perform maintenance at the
appropriate time [1,2]. However, in some environments,
outliers or missing data frequently occurs in the collected data
due to various factors such as equipment lifespan limitations
caused by aging and physical failures caused by external
shocks. Shutting down and repairing the equipment whenever
missing data occur incurs enormous opportunity costs, and
situations may unavoidably arise in which sensor replacement
is difficult. If these problems accumulate, they leads to a
serious situation where it becomes impossible to accurately
predict the state of the equipment [3,4]. Therefore, the need
for a robust model that maintains high accuracy and consistent
performance is emerging, even when missing data occurs
within a sequence of data.

Amidst the growing demand for research in the 4th
Industrial Revolution and predictive maintenance, language
models are gaining prominence as a rapidly emerging form of
artificial intelligence. Language models began with the
innovative Transformer architecture, and they have evolved
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into various Large Language Models (LLMs) such as BERT
[5], GPT-2 [6], and Llama 3 [7]. By understanding the
meaning of words and their contextual relationships in
sentences, these models have demonstrated successful results
in Natural Language Processing (NLP).

These Transformer-based language models possess the
ability to understand contextual relationships, namely, the
relationships between data points within vast datasets, and to
robustly capture complex patterns. As a result, they have
expanded into domains beyond NLP and have contributed to
a paradigm shift. In particular, Transformers and LLMs have
been actively explored recently in traditional machine learning
and deep learning tasks, such as structured tabular data and
time-series analysis. Based on this background, we raise the
following two research questions regarding our study

1) In sensor-missing environments for predictive maintenance,
can hybrid ML/DL models maintain high accuracy despite
progressive sensor failures?

2)  Can the text embeddings from pre-trained language models
contextually capture inter-sensor relationships and accurately project
complex data patterns?

In this paper, we explore the two aforementioned research
questions and propose a Hybrid architecture with a machine
learning teacher and a Language Model Embedding-based
student (HyLME) to perform accurate and robust predictive
maintenance in environments where sensor missingness
frequently occurs. The proposed architecture serializes sensor
data as text and extracts embeddings using a pre-trained
language model. These embeddings are then fused with the
original data and processed through a ResidualMLP head (a
neural network with residual connections). In this process, the
model is trained through knowledge distillation technique,
where a tree-based machine learning model serves as the
teacher and the ResidualMLP serves as the student. This
approach leverages the contextual learning capability of the
language model to capture inter-sensor relationships and the
robustness of a tree-based model against missing data.

The main contributions of this work are as follows:

e HyLME: This study demonstrates that the proposed
hybrid teacher-student architecture, which combines
pre-trained language model embeddings with machine
learning and deep learning models, is effective in
achieving accurate and robust predictive maintenance

even in the presence of missing sensor data.

Masking Scenario: To ensure accurate and fair
evaluation under sensor missing conditions, a masking
scenario was constructed based on feature importance.
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e Experimental Validation: Through comparative
experiments with ten baseline models on the MPTMS
dataset, HyLME achieved 15.99% higher average
accuracy, demonstrating the effectiveness of the

proposed framework in handling missing sensor data.

II. RELATED WORKS

A. Predictive Maintenance and Handling Missing data

The advancement of machine learning and deep learning
has played a significant role in the progress of the 4th
Industrial Revolution and predictive maintenance, leading to
successful outcomes. Hermawan et al. [8] proposed a CLSTM
architecture that combines CNN and LSTM to predict the
Remaining Useful Life (RUL) of aircraft engines, successfully
integrating important features from each structure and
achieving high accuracy. Furthermore, Ghadekar et al. [9]
proposed a machine learning-based anomaly detection model
using XGBoost and Local Outlier Factor to detect failures and
abnormal states in industrial equipment, demonstrating high
accuracy and introducing SHAP to enhance explainability,
thereby indicating the model’s applicability in real-world
settings. However, in actual facilities, missing sensor data
occurs frequently, and both studies have the limitation of not
considering such missing data scenarios.

To address missing data in tabular form, numerous studies
have continuously explored methods of data interpolation and
generation. Ba-Alawi et al. [10] and Lee et al. [11] utilized
Auto Encoder and Variational Auto Encoder architectures,
respectively, to learn from both incomplete and complete data
in order to restore the missing data. Both studies commonly
pointed out that traditional missing data processing methods,
such as simple mean imputation or interpolation, have the
limitation of failing to reflect the temporal characteristics and
interrelationships within the data. Their proposed architectures
demonstrated high accuracy by effectively generating normal
data.

The generation of missing data stems from the objective
of accurately predicting with normal data. However, Caruso
et al. [12] pointed out that conventional machine learning and
deep learning models can only learn by replacing missing data
in advance, and that the act of interpolating or generating
missing data itself may cause information loss or bias. Caruso
et al. proposed the NAIM, which is designed to learn
effectively from incomplete data by disregarding missing data.
NAIM treats missing data as a special token and ignores their
influence within the Transformer’s attention mechanism.
Moreover, it utilizes a regularization technique that randomly
masks a subset of features during each training epoch, thereby
inducing the model to learn generalized capabilities in the
presence of missing data. This approach indicates that
refraining from explicitly processing missing data can, in itself,
serve as a novel means of improving generalization in
predictive models.

B. Language Models and Text Embeddings

In a notable study on language model embeddings, Tang
et al. [13], pointed out that most regression studies utilizing
LLMs have focused on decoding-based approaches that
generate tokens directly as outputs, while investigations
employing embedding vectors directly remain insufficient.
Additionally, traditional embedding approaches exhibit a
steep performance drop when applied to high-dimensional
table-column inputs. To mitigate this, Tang et al. serialized
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table data into string, extracted text embeddings using an
LLMs, and fed them into an MLP regression head. Tang et al.
proved that the LLM preserves Lipschitz continuity by not
excessively expanding output distances relative to input
distances, and they suggested that the core property of the
embedding representation is its ability to maintain
performance or exhibit only a gradual decline irrespective of
input feature dimensionality.

In addition, Kaur et al. [14] conducted the first study to
leverage text embeddings from LLMs for time-series data.
They pointed out that existing time-series analysis approaches
using LLMs require fine-tuning with millions of parameters,
which leads to high computational and memory costs, making
them unsuitable for resource-constrained environments. They
also raised questions about the effectiveness of directly
applying LLMs to time-series data in terms of accuracy and
efficiency. LETS-C, proposed by Kaur et al., serializes
sequences into strings using digit-space tokenization, which
preserves numerical continuity. It then extracts embeddings
using a pretrained LLMs and trains a classifier composed of
CNN and MLP structures. This approach is grounded in the
capabilities of pre-trained LLMs, which, owing to their
Transformer structures and context-based learning methods,
can produce rich sequence representations and accurately
capture the complex patterns and temporal dependencies in
time-series data. Consequently, LETS-C has demonstrated
remarkable results, achieving State-of-the-Art (SOTA)
performance in benchmark experiments across various
datasets. Additionally, through cosine similarity analysis of
data samples represented as text embeddings, Kaur et al.
proved that samples within the same class are located close to
each other, while those from different classes are positioned
farther apart. This finding suggests that text embeddings from
LLMs are effective for time-series data.

While these studies have made significant contributions to
handling missing data and leveraging LLM embeddings
separately, our work uniquely combines these approaches
through knowledge distillation for robust predictive
maintenance. This integration addresses the limitations of
both approaches: the domain-specific knowledge gap in
LLMs and the potential information loss in traditional missing
data handling methods.

III. METHODOLOGY

A. HyLME: Intergration of Models Robust to Missing Data

HyLME employs a hybrid architecture in the form of
knowledge distillation [15] that learns both the text
embeddings extracted from a pre-trained BERT [5] model and
the logits of an XGBoost [16] model, which is a tree-based
machine learning algorithm.

BERT is trained with both the Masked Language Model
technique, which learns local contextual information within a
sentence, and the Next Sentence Prediction technique, which
learns global contextual information between sentences. This
training approach makes it possible to effectively capture
complex semantic relationships between words and sentences.
It has a characteristic where the overall interpretation of the
context is not significantly affected, even if some words in a
sentence are inappropriate, such as typos. This robustness to
missing or corrupted text translates well to handling missing
sensor readings in our application.

This implies that even in the presence of missing data or
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Fig. 1. Overview of a Hybrid architecture with a machine learning teacher and a Language Model Embedding-based student (HyLME).

outliers, the inter-variable relationships can be preserved, and
similar classes are expected to be projected into a shared
embedding space. However, when applied to domains not
covered by the pre-trained model’s knowledge base, a lack of
domain-specific knowledge may occur, and the degradation in
representational capacity can become more pronounced.

To address this limitation, we incorporate XGBoost as a
complementary model. XGBoost has a structure that learns by
repeatedly partitioning the data into intervals, and it possesses
a robust characteristic whereby the overall model structure
and predictive performance are not significantly affected even
in the presence of outliers or missing data in the input data.

Accordingly, as shown in Fig. 1, this study adopts a
knowledge distillation architecture in which the embeddings
from the language model are fused with the original data as
input, and the prediction signals from the tree-based machine
learning model are used as supervised learning targets to learn
the decision process. This approach is designed to precisely
capture the relationships among variables in complex sensor
data and to perform predictive maintenance robustly in the
presence of missing data.

B. Extracting Text Embeddings from Pre-trained Language
Models

Masking Scenario: In this study, a masking scenario is
introduced in which a predetermined number of variables are
forcibly set to “-1” according to each scenario, indicating
missing values or sensor outliers and thereby simulating a
missing data environment. This simulates real-world sensor
failure patterns that maintenance systems frequently encounter.
This method is designed to train the model’s generalization
performance under missing data conditions and to verify its
robustness.

Similarly, Caruso et al. [12] applied epoch-wise random
masking to missing data, but the per-step resampling
introduced additional computational cost. To mitigate this
overhead, we randomly generate a single masking pattern at
initialization and reuse it for all training iterations.

This masking scenario operates differently between the
training and testing phases. In the training phase, masking is
applied randomly, whereas during testing variables are
masked sequentially in descending order of XGBoost-derived
feature importance so that we can directly observe the impact
of losing the most critical sensors. The number of masked
sensors in each scenario increases consistently as the scenario
level increases.

String Serialization: The sensor data preprocessed
according to the masking scenario is used to extract text
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embeddings through a pre-trained language model (BERT).
As shown in Fig. 1, the data input to the language model is
converted into a string based on the digit-space tokenization
strategy.

This method, devised in the study by Kaur et al. [14],
converts numerical values into integers at a precision of one
decimal place and then represents each digit by separating
them with spaces. For example, the value "49.99" is replaced
with "4 9 9".

In addition, the values between sensors are separated by
commas, and the masked value “-1” is replaced with a special
token “[M]”. The final constructed string is then converted
into a token sequence through the pre-trained tokenizer of the
language model and used for embedding extraction.

Text Embedding Extraction: The text serialized through
the digit-space tokenization and special tokens is used to
extract text embeddings via a language model. In this study,
embeddings are extracted using a pre-trained BERT, and the
embedding extraction process is inspired by Tang et al. [13].

Given an input string x, it is converted into a token
sequence of length L, denoted as T = T(x) = (t, t, ..., t.),
using a pre-trained tokenizer. This token sequence is
propagated through the Transformer structure of the language
model, resulting in a hidden state H = [hy, hy,...,h;]T €
RE*4 where d is the embedding dimension of the BERT (768).
The final text embedding is obtained through mean pooling,
as expressed in (1).

L
pIy =7 nER W

C. Machine Learning Teacher and Deep Learning Student

The extracted text embedding is fused with the original
data, where the smaller-dimensional input is zero-padded to
match the larger dimension for alignment. Here, the fusion is
performed through element-wise addition. This method is
inspired by the study of Kaur et al., which reported that simple
addition was more effective than concatenation. Following
this approach, the present study also constructs the input data
by adopting the fusion method of addition after dimensional
alignment.

This data is used as input to the ResidualMLP head for
classification, and the training is performed using a knowledge
distillation approach that learns the logits of XGBoost. In this
architecture, the ResidualMLP acts as the student and
XGBoost as the teacher, with the student learning from the
knowledge of the teacher. XGBoost is used after being pre-



trained on the corresponding dataset using the original input
rather than the embedding. The loss function for training the
ResidualMLP can be briefly represented as follows. Based on
empirical evaluation, the hyperparameter 7'in (3) was selected
to be 4.0, and A in (4) was selected to be 0.5.

Lcg = Cross Entropy(y,9) @
Zy Zs

Lgp = T2 - KL(softmax (—) Il softmax (—)) )
T, T

Lotar = (1 —=2A) *Leg + A+ Lgp )

IV. EXPERIMENTS

A. Datasets

To validate the predictive maintenance accuracy and
robustness to missing data of the proposed architecture, the
Multimodal Data for Predictive Maintenance of Transport
Devices in Manufacturing Sites (MPTMS) [17], which
consists of 13,121 sample sets collected from real-world
manufacturing environments, was used. The MPTMS dataset
consists of sensor data and thermal images for carbonization
prediction, applicable in real manufacturing sites for
semiconductors, displays, and automobiles. It is provided with
labels for a total of four conditions, which are normal, caution,
warning, and danger conditions.

From this dataset, excluding the image data, data from
eight types of sensors were extracted and used. The sensor
data was restructured into a tabular format for processing. The
sensors used include NTC, PM1.0, PM2.5, PM10, CT1, CT2,
CT3, and CT4, and their correlations with the classification
labels are shown in Fig. 2. In particular, a high degree of
correlation was observed among the PM-series sensors, and a
certain level of interdependence was also found among the
CT-series sensors.

The feature importance of the entire sensor dataset was
calculated using the XGBoost model, and the results are
presented in Fig. 3. A notable finding is that there is a
significant drop after the top three sensors, suggesting that a
small subset of sensors has a dominant impact on prediction
performance. In this study, masking scenarios were applied to
the MPTMS dataset, and comparative experiments were
conducted by training both baseline models and HyLME.

B. Baseline Competitive Models

The baseline models were constructed using both
methodologies adopted in previous studies and widely
recognized SOTA models, Linear Regression [18], XGBoost
[16], and Support Vector Machine (SVM) [19] are machine
learning-based models that have demonstrated strong
performance on tabular data. MLP [20] and ResidualMLP,
which incorporates the idea of residual connections from
ResNet [21], are basic deep learning model whose
performance has already been proven in many fields. In
addition, AutoEncoder [10], an unsupervised model that
learns to compress input data into a latent space and
reconstruct it, has been widely used as an approach for
generating missing data. Finally, Transformer-based models
known to achieve SOTA performance on tabular data, such as
TabNet [22], TabTransformer [23], and FTTransformer [24],
were also included for comparative experiments.

C. Evaluation Metrics

The evaluation metrics for the experimental results are
accuracy, precision, recall, and F1-Score, and the formulas for
each are defined in (5)-(8).
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D. Results

Quantitative Evaluation: As shown in Table 1, the
proposed HyLME achieved the highest performance among
all comparison models, with an average scenario accuracy of
0.83207. Although the improvement over XGBoost, the
second-best model, was relatively modest at approximately
0.36%, this difference becomes more substantial in scenarios
with multiple missing sensors. Specifically, the performance
gains became more noticeable from Scenario 4 onward, where
missing data began to affect the top three sensors identified by
feature importance.

The key point here is that, in Scenarios 4 through 7,
HyLME achieved higher accuracies than XGBoost by 1.241%,
0.383%, 0.481%, and 0.691%, respectively, with an average
improvement of 0.699%, exceeding the overall average gain.
These results suggest that HyLME presents a meaningful
advancement in addressing the limitations of existing models
under missing data conditions.

Despite being a model renowned for achieving SOTA
performance in numerous studies thanks to its robustness
against outliers and missing data, XGBoost exhibited a decli
ne in performance as the number of missing sensors grew. In



TABLE L

QUANTITATIVE STUDY RESULTS

Models Accuracy of Masking Scenario

0 1 2 3 4 5 6 7 Average
LinearRegression 0.79934 0.49411 0.49580 0.49508 0.46345 0.45530 0.45530 0.45530 0.51421
XGBoost 0.93392 0.92827 0.92642 0.92585 0.81983 0.79805 0.73850 0.56180 0.82908
SVM 0.87470 0.85501 0.84589 0.84678 0.64491 0.61433 0.56261 0.50420 0.71855
MLP 0.90036 0.88866 0.88091 0.87010 0.71752 0.71284 0.62667 0.50347 0.76257
ResidualMLP 0.91932 0.91189 0.90116 0.88212 0.79377 0.75472 0.69590 0.54543 0.80054
AutoEncoder (R) 0.85162 0.68372 0.53195 0.52945 0.31023 0.30353 0.31370 0.16242 0.59213
AutoEncoder (L) 0.84622 0.84008 0.81548 0.78425 0.67872 0.63555 0.61578 0.49177 0.71348
TabNet 0.88761 0.87801 0.87768 0.87502 0.72906 0.70179 0.54591 0.47684 0.74649
TabTransformer 0.85646 0.86566 0.82072 0.77376 0.59981 0.63684 0.50258 0.45530 0.68889
FTTransformer 0.91730 0.91496 0.90963 0.89285 0.81459 0.77441 0.69905 0.53929 0.80776
HyLME (Ours) 0.93424 0.92730 0.92609 0.93005 0.83000 0.80111 0.74205 0.56568 0.83207

TABLE IL ABLATION STUDY RESULTS
Models Average of Masking Scenario
Acc P R F1
MLP 0.76257 0.79902 0.70758 0.71509
ResidualMLP 0.80054 0.81316 0.75925 0.76028
ResidualMLP xp) | 0.81995 0.84366 0.77813 0.77989
HyLME (w/o Fusion) 0.81867 0.81532 0.77281 0.77361
HyLME (w/o KD) 0.83189 0.84534 0.79445 0.80002
HyLME (Ours) 0.83207 0.85423 0.78957 0.79723

contrast, our proposed model not only attained the highest
initial performance but also delivered the top accuracy in all
later scenarios, with the exception of Scenarios 1 and 2.

Furthermore, the proposed model showed 3.01% higher
accuracy than FTTransformer, a known SOTA model for
tabular data that has a transformer structure similar to
language models. In conclusion, our model recorded an
average accuracy 15.99% higher than the average accuracy of
0.71737 from the other models in the comparison group,
excluding HyLME. This performance improvement supports
the proposed architecture’s capability to handle missing data
environments and demonstrates its effectiveness in enhancing
both accuracy and robustness. Here, Fig. 4 represents the
scenario-wise accuracy of each model, and the results
presented in Table 1 and Fig. 2 were recorded by selecting the
model with the highest average accuracy in each scenario.-

Ablation Study: The HyLME architecture assumes that
the pretrained language model, with its context-aware learning
capabilities, can capture relationships among sensors and
project instances belonging to the same class closer together
in the embedding space. However, since it was not trained on
the downstream task, the model aimed to alleviate the issue of
knowledge deficiency by learning the logits from the tree-
based XGBoost model, which is robust to missing data.

To demonstrate the effect of each component on model
performance, an ablation study was conducted, with the
results shown in Table 2. Primarily, the ResidualMLP was
chosen over a MLP to mitigate the vanishing gradient problem
and ensure stable training via residual connections. Based on
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accuracy, the ResidualMLP recorded a score of 0.80054,
representing a 4.98% improvement compared to the MLP.

When the text embedding from the language model was
applied, an accuracy of 0.81867 was achieved, which is 2.26%
higher than the result without it. Additionally, when the text
embedding was fused with the original data, the performance
improved by 3.92% compared to the standard ResidualMLP,
demonstrates that the fusion led to better results. This indicates
that training on the fused embeddings from the pre-trained
language model is effective for improving performance.

In addition, an accuracy of 0.81995 was achieved by
training with knowledge distillation from XGBoost without
incorporating language model embeddings, confirming the
effectiveness of learning from a tree-based model. However,
when the language model embeddings were first fused and
then used in the knowledge distillation process, the accuracy
improved to 0.83207, representing a 1.48% enhancement.
These experimental results demonstrate that each component
proposed in the HyLME architecture contributes effectively to
improving predictive maintenance performance under missing
data conditions.

V. CONCLUSIONS

In this paper, we proposed HyLME, a novel approach for
robust predictive maintenance under missing sensor
conditions. HyLME integrates text embeddings from pre-
trained language models with tree-based machine learning
through knowledge distillation, effectively combining the
contextual understanding capabilities of BERT with the
robustness of XGBoost. Our approach serializes sensor data



into text format using digit-space tokenization and extracts
embeddings that capture inter-sensor relationships, which are
then fused with original features and processed through a
ResidualMLP student network guided by XGBoost teacher
logits.

Comprehensive experiments on the MPTMS dataset with
13,121 real-world manufacturing samples demonstrated
HyLME's effectiveness. The proposed method achieved an
average accuracy of 83.21% across all missing data scenarios,
outperforming ten baseline models by 15.99% on average.
Notably, HyYLME maintained superior performance stability
as sensor failures increased, showing particular strength in
scenarios where critical sensors were missing (maintaining
over 80% accuracy with up to five missing sensors). The
ablation study revealed that language model embeddings
alone contributed a 14.74% improvement over traditional
autoencoder approaches, validating our hypothesis that pre-
trained language models can effectively capture complex
sensor relationships even in degraded conditions.

Despite these promising results, we acknowledge several
limitations. First, the knowledge distillation approach
inherently bounds student performance by teacher capabilities,
which may explain why HyLME's performance closely tracks
XGBoost in certain scenarios. Second, our current approach
does not explicitly model temporal dependencies in sensor
data, focusing instead on inter-sensor relationships at
individual time points. Third, computational overhead from
text serialization and embedding extraction may limit real-
time deployment in resource-constrained environments.

Future research will address these limitations through
several directions: (1) exploring alternative knowledge
transfer mechanisms that allow the student to surpass teacher
performance, (2) incorporating temporal modeling through
recurrent or attention-based architectures while maintaining
robustness to missing data, and (3) validating generalization
across diverse industrial datasets and sensor modalities.
Additionally, we plan to analyze the learned embeddings to
better understand which linguistic patterns correspond to
sensor relationships, potentially leading to more interpretable
predictive maintenance systems.
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