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Abstract— Al-driven Digital Twin Networks (DTNs),
essential for autonomous network management, face a critical
"cold start" problem: initial data scarcity hinders AI model
training, leading to unreliable simulations and suboptimal
resource allocation. We propose a generative framework using
diffusion models to synthesize high-fidelity network metrics (e.g.,
latency, jitter), specifically designed to capture their complex,
non-stationary time-series characteristics. Our diffusion-based
method overcomes the training instability and mode collapse
issues of traditional GANs, generating data that more accurately
preserves the statistical properties of real network traffic. We
validate our framework's superiority over GANs through
rigorous statistical analysis and performance on downstream
tasks like anomaly detection. This work solves the DTN cold-
start problem, enabling reliable Al-driven network
management from day one and advancing the adoption of
resilient, intelligent network virtualization.
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[. INTRODUCTION

Driven by advancements in the Internet of Things (IoT),
cloud computing, and big data, modern network systems are
evolving into complex ecosystems [1]. As network traffic and
application demands continue to grow, traditional manual
network management has become impractical, compelling a
shift towards intelligent, data-driven strategies [2]. In this
context, Digital Twin (DT) technology has been integrated
with networking to form the Digital Twin Network (DTN) [3,
4]. A DTN establishes bidirectional communication between
virtual and physical network spaces, enabling real-time
monitoring, optimization, and control [5]. This paradigm
allows operators to simulate, analyze, and predict network
behavior in a risk-free virtual environment, fundamentally
changing how complex networks are managed [6].

The advanced capabilities of DTNs rely on Artificial
Intelligence (Al), particularly Machine Learning (ML) and
Deep Learning (DL) models [7]. These Al models are
essential for processing complex data and predicting future
network states to support automated decision-making.
However, their performance depends on the availability of
large, high-quality datasets for training. This requirement
presents a critical bottleneck during the initial deployment of
a DTN, a challenge known as the "cold start" problem [8]. The
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initial scarcity of data severely hampers the training of
effective Al models, leading to unreliable simulations,
suboptimal resource allocation, and significant delays in
deploying intelligent network services.

To mitigate the cold-start problem, network operators
often rely on existing data generation methods, primarily
network simulators and other generative Al models like
Generative Adversarial Networks (GANs). However, each of
these approaches has significant limitations :

Network Simulators: While tools such as NS-3 and
OMNET++ are widely used, they often struggle with
accuracy, speed, and scalability. These computational
models may not perfectly capture the real-time
dynamics of actual networks and typically lack the
real-time, bidirectional communication required for a
high-fidelity DTN [6].

Generative Adversarial Networks (GANs): GANs
are used to synthesize network data for privacy or to
balance datasets [9]. However, their training is often
unstable, and they can suffer from "mode collapse,"
failing to generate the full diversity of real data [10].
This is a critical flaw for network traffic, as the model
may miss rare but important events like anomaly
spikes.

To overcome these limitations, this paper introduces a
generative model based on Denoising Diffusion Probabilistic
Models (DDPMs), a technique adopted in other domains [11].
Diffusion models represent the state-of-the-art in generative
Al, demonstrating notable success in producing high-fidelity
samples.

We adapt this powerful technology to the unique
challenges of network data. Our framework is specifically
designed to model the complex characteristics of network
metrics, such as latency, jitter, and packet loss, which are non-
stationary time-series data exhibiting strong temporal
dependencies [12]. We hypothesize that the stable training
process and iterative refinement of diffusion models can
capture the intricate dynamics of network traffic with higher
fidelity than conventional GAN-based approaches.
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II. BACKGROUND AND RELATED WORKS

A. Fundamentals of Digital Twin Networks

A Digital Twin Network (DTN) is a virtual replica of a
physical network, designed for advanced simulation, analysis,
and control [4, 5]. As shown Fig 1, DTN operates as an
intelligent intermediary between network applications and the
physical infrastructure. The architecture consists of three main
layers [5] :
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Fig. 1. Digital Twin Network Architecture

e Physical Network: This is the foundation, containing
the actual network hardware like routers, switches, and
servers. It continuously sends real-time operational
data to the twin via data collection. In turn, it receives
and executes commands from the twin via the control
interface.

Instance of Digital Twin Network: This is the core
virtual layer that processes data and makes decisions.
Its key components include:

(1) Data Repository: Stores the vast amount of data
collected from the physical network, making it
available for modeling and analysis.

(2) Service Mapping Models: This is the "brain" of
the DTN. It contains basic models that represent
the network's static properties like devices and

topology, and functional models that simulate

dynamic behaviors like traffic flow and
performance.
(3) Digital Twin Network Management: This

component oversees the lifecycle of the twin
models and translates application requirements
into actionable insights.

Application: This layer contains user-facing services
and management tools. Applications provide high-
level requirements as Intent Input (e.g., "ensure low
latency for video streaming") to the DTN. The DTN
then offers its analysis and predictive insights back to
the applications through Capability Exposure,
enabling smarter, automated network services.

This structure creates a closed-loop system where the DTN
continuously learns from the physical network and uses that
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knowledge to optimize its performance based on application
intents.

B. Generative Al for Network Data Synthesis

Generative Al has become a critical tool for addressing
data-related challenges in networking, such as data scarcity,
privacy, and class imbalance.

Generative Adversarial Networks (GANs) in
Networking : A GAN is a class of machine learning
frameworks where two neural networks, a generator
and a discriminator, compete with each other in a zero-
sum game [13]. The generator learns to create
plausible data, while the discriminator learns to
distinguish the generator's fake data from real data. In
the networking domain, GANs have been applied to
generate synthetic network and user data to mitigate
privacy risks [14], and they have been used to create
supplementary training samples to address the non-1ID
(non-independent and identically distributed) issue in
federated learning environments [15]. While effective
in certain scenarios, their application is often
complicated by the aforementioned challenges of
training instability and mode collapse [10].

A Primer on Denoising Diffusion Probabilistic
Models (DDPMs) : Diffusion models are a powerful
class of generative models that learn to create data by
reversing a gradual noising process [11]. This
paradigm consists of two processes:

(1) The Forward Process: A fixed Markov chain that
progressively adds Gaussian noise to the input
data over a series of timesteps, eventually
transforming the data into pure, unstructured noise.

The Reverse Process: A learned neural network
is trained to reverse this process. It learns to
iteratively denoise a sample, starting from pure
noise, and gradually reconstructs a clean, realistic
data sample by predicting the noise that was added
at each timestep. This step-by-step refinement
process is a key reason for the high sample quality
produced by diffusion models and contributes to
their more stable training dynamics compared to
the adversarial training of GANs.
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The task of generating synthetic network data is uniquely
challenging. Network metrics such as latency and jitter are not
independent data points but are components of a complex,
multivariate time-series, making their accurate generation a
non-trivial problem [12].

III. PROPOSED METHOD AND EXPERIMENTAL DESIGN

A. Architecure

The efficacy of diffusion-based generative models is
critically dependent on the neural network architecture trained
to approximate the reverse denoising process. While
conventional DDPMs leverage a U-Net for image generation
[11, 16], its architecture, being optimized for 2D spatial data,
is ill-suited for the time-series characteristics of the network
metrics targeted in this study. Therefore, we adapt and re-
engineer the U-Net architecture to effectively model the
temporal nature of our data through the following key
modifications.



First, we perform a Dimensionality Transformation,
replacing all 2D operations within the U-Net with their 1D
counterparts. Specifically, 2D Convolutional layers are
substituted with 1D Convolutional layers that slide along the
time axis to capture local temporal patterns. Correspondingly,
all downsampling and upsampling operators, such as
MaxPooling and Transposed Convolutions, are also adapted
to their 1D equivalents.

Second, we implement a mechanism for Incorporating
Conditioning. The diffusion process must be conditioned on
the current timestep t. To achieve this, the scalar value of t is
embedded into a high-dimensional vector, which is then
integrated into each convolutional block within the U-Net.
This design allows the model to perform an optimized
denoising operation tailored to the current noise level.

Through these architectural optimizations, our model is
tailored to capture the intricate dynamics of network time-
series data, enabling the generation of superior-quality

synthetic metrics compared to conventional generative models.

B. Experiment Setup

To evaluate our proposed model, we conducted a series of
experiments using public benchmark datasets and state-of-the-
art baseline models.

e RCAEval: The RCAEval dataset is a benchmark for
root cause analysis in modern microservice
environments [17]. It reflects the complex operational
dynamics of cloud-native applications, containing rich
telemetry data collected during both normal and fault-
injected states. For this study, we extracted key time-
series metrics that represent the dynamic state of the
system, including CPU Utilization, Memory Usage,
and Network Load, to serve as the training and
validation data for our generative model.

e KDDI Cup '99: This is one of the most well-known
benchmark datasets in the field of network intrusion
detection, comprising various types of network attacks
as well as normal traffic [18]. In this work, the KDDI
Cup '99 dataset was not used for direct model training
but rather as an evaluation set for a downstream task to
assess the practical utility of our synthetic data.
Specifically, we validate the quality of the generated
data by evaluating how effectively an anomaly
detection model, trained on the synthetic data, can
classify the attack types present in the KDDI dataset.

All extracted time-series data were preprocessed by
partitioning them into fixed-length sequence windows. To
ensure stable model training, each metric was subsequently
normalized to a [0, 1] range using Min-Max scaling. To
demonstrate the superiority of our proposed methodology, we
established the following three generative models as baselines
for comparison.

e Vanilla GAN: The most fundamental form of a GAN,
included to establish a performance lower bound [13].

e TimeGAN (TSGAN): A state-of-the-art GAN-based
model specifically designed for time-series data,
combining adversarial and supervised learning to
preserve temporal dynamics [19].

e Proposed DDPM: The diffusion model optimized for
time-series data generation as proposed in this paper,

featuring a 1D U-Net architecture conditioned on the
diffusion timestep.

IV. EXPERIMENT RESULT

To conduct a multifaceted evaluation of our proposed
generative model, we assessed its performance from two
critical aspects: Similarity, which measures how well the
synthetic data mimics the original data, and Utility, which
evaluates its effectiveness as a substitute for real data in an
applied task.

To quantitatively assess how accurately the generated data
reproduces the statistical distributions of the real data, we
defined a Similarity Score based on the Kullback-Leibler (KL)
Divergence [20]. The KL-Divergence is a measure of how one
probability distribution differs from a second, reference
probability distribution; a value of zero indicates that the two
distributions are identical. For intuitive comparison, we
normalized the KL-Divergence value as formulated in (1),
such that a score closer to 1 signifies a smaller divergence and
thus a higher degree of statistical similarity.

1
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Beyond statistical similarity, we evaluated whether the
synthetic data can serve as a viable surrogate for real data in a
practical DTN operational scenario via a downstream task.
For this purpose, we utilized a short-term time-series
forecasting model built upon Long Short-Term Memory
(LSTM) layers [21]. The evaluation procedure is as follows:

e First,an LSTM forecasting model is trained on the real
training dataset and evaluated on the real test dataset to
establish a baseline performance, measured in Mean
Squared Error (MSE) and Mean Absolute Error
(MAE).

e Next, the same trained model is evaluated using the
synthetic dataset as input to measure its performance.

e The performance degradation—i.e., the difference in
MSE and MAE compared to the baseline—is
calculated. A smaller difference is indicative of higher
utility. The final Utility Score is defined as shown in

(2), 3).
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Table 1 summarizes the statistical similarity scores
between the synthetic data generated by each model and the
original data. The experimental results show that our proposed
DDPM model consistently achieves the highest similarity
scores across all datasets, significantly outperforming the
other baseline models. Table 2 presents the results from the
utility evaluation, measured via the downstream time-series
forecasting task. The results indicate the degree of
performance degradation when using synthetic data, relative



to the baseline performance established with real data.
Consequently, the DDPM-generated data led to the least
amount of performance degradation in the forecasting model.

TABLE L. RESEULT (SIMILARITY)
Method Dataset
RCAEval KDDI Cup ‘99
Proposed Diffusion 0.876 = 0.012 0.913 £ 0.004
TSGAN 0.751 + 0.006 0.881 +0.008
Vanilla GAN 0.462 + 0.004 0.824 +0.017
TABLE II. RESEULT (UTILITY)
Dataset
Method RCAEval KDDI Cup ‘99
MSE MAE MSE MAE
Proposed Diffusion 0.110 0.265 0.032 0.143
TSGAN 0.150 0.309 0.045 0.169
Vanilla GAN 0.270 0.415 0.043 0.165

These findings provide strong evidence that the synthetic data
generated by our framework is not only statistically similar to
the real data but also holds high practical value, making it a
suitable surrogate for training Al models in real-world
applications.

V. CONCLUSIONS

This paper addressed the critical "cold start" problem in
Al-driven Digital Twin Networks (DTNs), where an initial
scarcity of data hinders the training of effective management
models. To overcome the limitations of existing network
simulators and GAN-based generative models, we introduced
a framework based on Denoising Diffusion Probabilistic
Models (DDPMs), featuring a U-Net architecture re-
engineered for time-series network metric data.

Our comprehensive experiments demonstrated the
superiority of the proposed framework. The model
significantly outperformed GAN-based baselines in statistical
fidelity, and its generated data caused the least performance
degradation in a downstream forecasting task, confirming its
high practical utility. These findings provide strong evidence
that our synthetic data can serve as a viable surrogate for real-
world data, effectively solving the initial data scarcity
challenge.

While the slower sampling speed of diffusion models
remains a limitation, future work will focus on improving
sampling efficiency. Furthermore, we plan to extend this
research to conditional diffusion-based methods. A promising
direction involves using unstructured network log data as a
condition to generate corresponding time-series metrics,
which would enable high-fidelity simulations of network
behavior under specific, log-indicated events.
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