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Abstract— AI-driven Digital Twin Networks (DTNs), 

essential for autonomous network management, face a critical 

"cold start" problem: initial data scarcity hinders AI model 

training, leading to unreliable simulations and suboptimal 

resource allocation. We propose a generative framework using 

diffusion models to synthesize high-fidelity network metrics (e.g., 

latency, jitter), specifically designed to capture their complex, 

non-stationary time-series characteristics. Our diffusion-based 

method overcomes the training instability and mode collapse 

issues of traditional GANs, generating data that more accurately 

preserves the statistical properties of real network traffic. We 

validate our framework's superiority over GANs through 

rigorous statistical analysis and performance on downstream 

tasks like anomaly detection. This work solves the DTN cold-

start problem, enabling reliable AI-driven network 

management from day one and advancing the adoption of 

resilient, intelligent network virtualization. 
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I. INTRODUCTION 
Driven by advancements in the Internet of Things (IoT), 

cloud computing, and big data, modern network systems are 
evolving into complex ecosystems [1]. As network traffic and 
application demands continue to grow, traditional manual 
network management has become impractical, compelling a 
shift towards intelligent, data-driven strategies [2]. In this 
context, Digital Twin (DT) technology has been integrated 
with networking to form the Digital Twin Network (DTN) [3, 
4]. A DTN establishes bidirectional communication between 
virtual and physical network spaces, enabling real-time 
monitoring, optimization, and control [5]. This paradigm 
allows operators to simulate, analyze, and predict network 
behavior in a risk-free virtual environment, fundamentally 
changing how complex networks are managed [6]. 

The advanced capabilities of DTNs rely on Artificial 
Intelligence (AI), particularly Machine Learning (ML) and 
Deep Learning (DL) models [7]. These AI models are 
essential for processing complex data and predicting future 
network states to support automated decision-making. 
However, their performance depends on the availability of 
large, high-quality datasets for training. This requirement 
presents a critical bottleneck during the initial deployment of 
a DTN, a challenge known as the "cold start" problem [8]. The 

initial scarcity of data severely hampers the training of 
effective AI models, leading to unreliable simulations, 
suboptimal resource allocation, and significant delays in 
deploying intelligent network services. 

To mitigate the cold-start problem, network operators 
often rely on existing data generation methods, primarily 
network simulators and other generative AI models like 
Generative Adversarial Networks (GANs). However, each of 
these approaches has significant limitations : 

• Network Simulators: While tools such as NS-3 and 
OMNET++ are widely used, they often struggle with 
accuracy, speed, and scalability. These computational 
models may not perfectly capture the real-time 
dynamics of actual networks and typically lack the 
real-time, bidirectional communication required for a 
high-fidelity DTN [6]. 

• Generative Adversarial Networks (GANs): GANs 
are used to synthesize network data for privacy or to 
balance datasets [9]. However, their training is often 
unstable, and they can suffer from "mode collapse," 
failing to generate the full diversity of real data [10]. 
This is a critical flaw for network traffic, as the model 
may miss rare but important events like anomaly 
spikes. 

To overcome these limitations, this paper introduces a 
generative model based on Denoising Diffusion Probabilistic 
Models (DDPMs), a technique adopted in other domains [11]. 
Diffusion models represent the state-of-the-art in generative 
AI, demonstrating notable success in producing high-fidelity 
samples.  

We adapt this powerful technology to the unique 
challenges of network data. Our framework is specifically 
designed to model the complex characteristics of network 
metrics, such as latency, jitter, and packet loss, which are non-
stationary time-series data exhibiting strong temporal 
dependencies [12]. We hypothesize that the stable training 
process and iterative refinement of diffusion models can 
capture the intricate dynamics of network traffic with higher 
fidelity than conventional GAN-based approaches. 
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II. BACKGROUND AND RELATED WORKS 

A. Fundamentals of Digital Twin Networks 
A Digital Twin Network (DTN) is a virtual replica of a 

physical network, designed for advanced simulation, analysis, 
and control [4, 5]. As shown Fig 1, DTN operates as an 
intelligent intermediary between network applications and the 
physical infrastructure. The architecture consists of three main 
layers [5] : 

 
Fig. 1. Digital Twin Network Architecture 

• Physical Network: This is the foundation, containing 
the actual network hardware like routers, switches, and 
servers. It continuously sends real-time operational 
data to the twin via data collection. In turn, it receives 
and executes commands from the twin via the control 
interface. 

• Instance of Digital Twin Network: This is the core 
virtual layer that processes data and makes decisions. 
Its key components include:  

(1) Data Repository: Stores the vast amount of data 
collected from the physical network, making it 
available for modeling and analysis. 

(2) Service Mapping Models: This is the "brain" of 
the DTN. It contains basic models that represent 
the network's static properties like devices and 
topology, and functional models that simulate 
dynamic behaviors like traffic flow and 
performance. 

(3) Digital Twin Network Management: This 
component oversees the lifecycle of the twin 
models and translates application requirements 
into actionable insights. 

• Application: This layer contains user-facing services 
and management tools. Applications provide high-
level requirements as Intent Input (e.g., "ensure low 
latency for video streaming") to the DTN. The DTN 
then offers its analysis and predictive insights back to 
the applications through Capability Exposure, 
enabling smarter, automated network services. 

This structure creates a closed-loop system where the DTN 
continuously learns from the physical network and uses that 

knowledge to optimize its performance based on application 
intents. 

B. Generative AI for Network Data Synthesis 
Generative AI has become a critical tool for addressing 

data-related challenges in networking, such as data scarcity, 
privacy, and class imbalance. 

• Generative Adversarial Networks (GANs) in 
Networking : A GAN is a class of machine learning 
frameworks where two neural networks, a generator 
and a discriminator, compete with each other in a zero-
sum game [13]. The generator learns to create 
plausible data, while the discriminator learns to 
distinguish the generator's fake data from real data. In 
the networking domain, GANs have been applied to 
generate synthetic network and user data to mitigate 
privacy risks [14], and they have been used to create 
supplementary training samples to address the non-IID 
(non-independent and identically distributed) issue in 
federated learning environments [15]. While effective 
in certain scenarios, their application is often 
complicated by the aforementioned challenges of 
training instability and mode collapse [10]. 

• A Primer on Denoising Diffusion Probabilistic 
Models (DDPMs) : Diffusion models are a powerful 
class of generative models that learn to create data by 
reversing a gradual noising process [11]. This 
paradigm consists of two processes: 

(1) The Forward Process: A fixed Markov chain that 
progressively adds Gaussian noise to the input 
data over a series of timesteps, eventually 
transforming the data into pure, unstructured noise. 

(2) The Reverse Process: A learned neural network 
is trained to reverse this process. It learns to 
iteratively denoise a sample, starting from pure 
noise, and gradually reconstructs a clean, realistic 
data sample by predicting the noise that was added 
at each timestep. This step-by-step refinement 
process is a key reason for the high sample quality 
produced by diffusion models and contributes to 
their more stable training dynamics compared to 
the adversarial training of GANs. 

The task of generating synthetic network data is uniquely 
challenging. Network metrics such as latency and jitter are not 
independent data points but are components of a complex, 
multivariate time-series, making their accurate generation a 
non-trivial problem [12]. 

III. PROPOSED METHOD AND EXPERIMENTAL DESIGN 

A. Architecure 
The efficacy of diffusion-based generative models is 

critically dependent on the neural network architecture trained 
to approximate the reverse denoising process. While 
conventional DDPMs leverage a U-Net for image generation 
[11, 16], its architecture, being optimized for 2D spatial data, 
is ill-suited for the time-series characteristics of the network 
metrics targeted in this study. Therefore, we adapt and re-
engineer the U-Net architecture to effectively model the 
temporal nature of our data through the following key 
modifications. 
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First, we perform a Dimensionality Transformation, 
replacing all 2D operations within the U-Net with their 1D 
counterparts. Specifically, 2D Convolutional layers are 
substituted with 1D Convolutional layers that slide along the 
time axis to capture local temporal patterns. Correspondingly, 
all downsampling and upsampling operators, such as 
MaxPooling and Transposed Convolutions, are also adapted 
to their 1D equivalents. 

Second, we implement a mechanism for Incorporating 
Conditioning. The diffusion process must be conditioned on 
the current timestep t. To achieve this, the scalar value of t is 
embedded into a high-dimensional vector, which is then 
integrated into each convolutional block within the U-Net. 
This design allows the model to perform an optimized 
denoising operation tailored to the current noise level. 

Through these architectural optimizations, our model is 
tailored to capture the intricate dynamics of network time-
series data, enabling the generation of superior-quality 
synthetic metrics compared to conventional generative models. 

B. Experiment Setup 
To evaluate our proposed model, we conducted a series of 

experiments using public benchmark datasets and state-of-the-
art baseline models. 

• RCAEval: The RCAEval dataset is a benchmark for 
root cause analysis in modern microservice 
environments [17]. It reflects the complex operational 
dynamics of cloud-native applications, containing rich 
telemetry data collected during both normal and fault-
injected states. For this study, we extracted key time-
series metrics that represent the dynamic state of the 
system, including CPU Utilization, Memory Usage, 
and Network Load, to serve as the training and 
validation data for our generative model. 

• KDDI Cup '99: This is one of the most well-known 
benchmark datasets in the field of network intrusion 
detection, comprising various types of network attacks 
as well as normal traffic [18]. In this work, the KDDI 
Cup '99 dataset was not used for direct model training 
but rather as an evaluation set for a downstream task to 
assess the practical utility of our synthetic data. 
Specifically, we validate the quality of the generated 
data by evaluating how effectively an anomaly 
detection model, trained on the synthetic data, can 
classify the attack types present in the KDDI dataset. 

All extracted time-series data were preprocessed by 
partitioning them into fixed-length sequence windows. To 
ensure stable model training, each metric was subsequently 
normalized to a [0, 1] range using Min-Max scaling. To 
demonstrate the superiority of our proposed methodology, we 
established the following three generative models as baselines 
for comparison. 

• Vanilla GAN: The most fundamental form of a GAN, 
included to establish a performance lower bound [13]. 

• TimeGAN (TSGAN): A state-of-the-art GAN-based 
model specifically designed for time-series data, 
combining adversarial and supervised learning to 
preserve temporal dynamics [19]. 

• Proposed DDPM: The diffusion model optimized for 
time-series data generation as proposed in this paper, 

featuring a 1D U-Net architecture conditioned on the 
diffusion timestep. 

 

IV. EXPERIMENT RESULT 
To conduct a multifaceted evaluation of our proposed 

generative model, we assessed its performance from two 
critical aspects: Similarity, which measures how well the 
synthetic data mimics the original data, and Utility, which 
evaluates its effectiveness as a substitute for real data in an 
applied task. 

To quantitatively assess how accurately the generated data 
reproduces the statistical distributions of the real data, we 
defined a Similarity Score based on the Kullback-Leibler (KL) 
Divergence [20]. The KL-Divergence is a measure of how one 
probability distribution differs from a second, reference 
probability distribution; a value of zero indicates that the two 
distributions are identical. For intuitive comparison, we 
normalized the KL-Divergence value as formulated in (1), 
such that a score closer to 1 signifies a smaller divergence and 
thus a higher degree of statistical similarity. 

  () 

Beyond statistical similarity, we evaluated whether the 
synthetic data can serve as a viable surrogate for real data in a 
practical DTN operational scenario via a downstream task. 
For this purpose, we utilized a short-term time-series 
forecasting model built upon Long Short-Term Memory 
(LSTM) layers [21]. The evaluation procedure is as follows: 

• First, an LSTM forecasting model is trained on the real 
training dataset and evaluated on the real test dataset to 
establish a baseline performance, measured in Mean 
Squared Error (MSE) and Mean Absolute Error 
(MAE). 

• Next, the same trained model is evaluated using the 
synthetic dataset as input to measure its performance. 

• The performance degradation—i.e., the difference in 
MSE and MAE compared to the baseline—is 
calculated. A smaller difference is indicative of higher 
utility. The final Utility Score is defined as shown in 
(2), (3). 

  () 

  () 

Table 1 summarizes the statistical similarity scores 
between the synthetic data generated by each model and the 
original data. The experimental results show that our proposed 
DDPM model consistently achieves the highest similarity 
scores across all datasets, significantly outperforming the 
other baseline models. Table 2 presents the results from the 
utility evaluation, measured via the downstream time-series 
forecasting task. The results indicate the degree of 
performance degradation when using synthetic data, relative 
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to the baseline performance established with real data. 
Consequently, the DDPM-generated data led to the least 
amount of performance degradation in the forecasting model.  

 

TABLE I.  RESEULT (SIMILARITY) 

Method 
Dataset 

RCAEval KDDI Cup ‘99 

Proposed Diffusion 0.876 ± 0.012 0.913 ± 0.004 

TSGAN 0.751 ± 0.006 0.881 ± 0.008 

Vanilla GAN 0.462 ± 0.004 0.824 ± 0.017 

TABLE II.  RESEULT (UTILITY) 

Method 

Dataset 

RCAEval KDDI Cup ‘99 

MSE MAE MSE MAE 

Proposed Diffusion 0.110 0.265 0.032 0.143 

TSGAN 0.150 0.309 0.045 0.169 

Vanilla GAN 0.270 0.415 0.043 0.165 

 

These findings provide strong evidence that the synthetic data 
generated by our framework is not only statistically similar to 
the real data but also holds high practical value, making it a 
suitable surrogate for training AI models in real-world 
applications. 

V. CONCLUSIONS 
This paper addressed the critical "cold start" problem in 

AI-driven Digital Twin Networks (DTNs), where an initial 
scarcity of data hinders the training of effective management 
models. To overcome the limitations of existing network 
simulators and GAN-based generative models, we introduced 
a framework based on Denoising Diffusion Probabilistic 
Models (DDPMs), featuring a U-Net architecture re-
engineered for time-series network metric data. 

Our comprehensive experiments demonstrated the 
superiority of the proposed framework. The model 
significantly outperformed GAN-based baselines in statistical 
fidelity, and its generated data caused the least performance 
degradation in a downstream forecasting task, confirming its 
high practical utility. These findings provide strong evidence 
that our synthetic data can serve as a viable surrogate for real-
world data, effectively solving the initial data scarcity 
challenge. 

While the slower sampling speed of diffusion models 
remains a limitation, future work will focus on improving 
sampling efficiency. Furthermore, we plan to extend this 
research to conditional diffusion-based methods. A promising 
direction involves using unstructured network log data as a 
condition to generate corresponding time-series metrics, 
which would enable high-fidelity simulations of network 
behavior under specific, log-indicated events. 
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