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Abstract— Future vehicles require ultra-reliable, low-
latency, and high-capacity wireless connectivity for autonomous
driving and entertainment services such as XR. This paper
investigates Al-based measurement prediction for proactive
handover in road-embedded mobile networks, training models
on simulated mobility data to minimize prediction errors.
Evaluation across various test cases demonstrates measurement
prediction performance and provides generalization guidelines
for Al-driven vehicular inter-cell mobility.
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Conventional mobility mechanisms, such as L3 handovers
(e.g., basic HO, CHO) and L1/L2-triggered mobility (LTM),
rely on current measurements and events to trigger cell
changes, but these reactive approaches[1][2] may degrade
performance in high-mobility and dense cell scenarios. As an
alternative, Al-based models have been proposed to predict
future signal quality or mobility events from past
measurements[3]. This paper investigates Al-based
measurement prediction in road-embedded mobile networks
to support ultra-reliable, low-latency, and high-capacity
connectivity. Experimental results demonstrate the feasibility
of measurement prediction using diverse driving datasets and
provide guidelines for achieving generalization.

INTRODUCTION

II. BACKGROUND AND RELATED WORK

3GPP has actively promoted AI/ML integration in mobile
networks, including CSI prediction/compression, beam
management, energy saving, load balancing, and mobility
optimization [4]. For NR-based AI/ML mobility (proactive
inter-cell mobility), use cases such as RRM measurement
prediction, event prediction, and RLF prediction have been
defined, along with evaluation methodologies, metrics, and
reported performance. System-level simulation (SLS)
methodologies, metrics, and results have also been presented
to validate overall effectiveness [5].

If an AI/ML model can accurately predict measurement
results within a specific future time interval, proactive inter-
cell mobility mechanisms can be designed on top of existing
reactive frameworks (e.g., Basic HO, CHO, LTM). Accurate
prediction, however, requires valid training datasets, which
are costly and difficult to obtain from uncontrolled real
environments. To address this, simulation environments
resembling real-world conditions are essential for generating
effective training data. Moreover, ensuring strong
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generalization allows the trained models to remain robust
across diverse mobility scenarios.

III. PROPOSED AI-BASED PREDICTION FRAMEWORK

In a road-embedded mobile network, all measurements are
performed by a UE mounted on the top of a vehicle and
correspond to the Reference Signal Received Power (RSRP).
The measurement methods are categorized into sliding and
non-sliding approaches. In the sliding approach, Mr, Mn, and
Fn are generated at the same sampling interval (e.g., 20 ms),
where Mn represents the average of recent Mr samples and Fn
is obtained through L3 filtering using Mn and the previous
Fn—1. In contrast, in the non-sliding approach, Mn and Fn are
generated at longer intervals (e.g., every 80 ms for p=5), while
in both methods the initial condition is set as Fn0 = Mn0.
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Fig. 1 illustrates the structure of the proposed AI/ML
Model Type 1. The model takes as input the time step and past
measurements from the previous, current, and next cells, and
outputs predicted future measurements for the same cells. In
the simulation, actual future measurements are available,
enabling training and evaluation based on the mean absolute
error between predicted and actual values, with particular
focus on the final prediction step. For example, with a 20 msec
time step and an observation window of 200 msec, the input
contains 11 past samples, while a 400 msec prediction window
results in 21 samples for both Past and Meas cells.

IV. SIMULATION AND PERFORMANCE EVALUATION

The road for the road-embedded mobile network is a 4 km
straight, six-lane highway, with three lanes in each direction.
Although base stations are deployed along the entire stretch,
measurements are collected only within the central 2 km
segment. Vehicle (UE) speeds follow either a fixed-speed
mode (dynamic driving mode, DDM = no) or a dynamic
driving mode (DDM = yes), where vehicles travel at 50-120
km/h, maintain safe distances, follow lanes, and perform lane
changes according to VANET highway driving algorithms.
Specific simulation parameters are listed in Table I. The
generated vehicle datasets (DS) are split into training (Tr DS)
and testing (Te DS) sets for AI/ML model training and
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evaluation, with identical environments denoted by the same
DS#no. Generalization Case #1 (GC#1) uses different train
and test datasets, while Generalization Case #2 (GC#2) mixes
data from multiple speeds (S1, S2, S3) within a single DS.
Table II summarizes 12 cases of dataset usage and
generalization, where cases using the same DS for both
training and testing are referred to as the baseline. Figs. 2 and
3 show the CDFs of the absolute errors for all samples and the
final sample, respectively.

The prediction rankings for Case IDs in Table II (Fig. 2
and Fig. 3) are generally consistent. Performance for the final
sample in Fig. 3 is lower than that for all samples in Fig. 2,
indicating decreasing accuracy for longer forecast horizons. In
the baseline, where a DS was split into training and evaluation
sets, prediction was highly accurate. Lowest performance was
observed for C005 and C008, due to limited generalization of
models trained on S1 (60 km/h) or mixed DS when applied to
DDM VS test DS. Conversely, CO11, trained on DDM VS DS,
achieved superior accuracy on the S3 (100 km/h) test DS,
reflecting typical highway speeds (90—110 km/h) and scarcity
of low-speed data.

V. CONCLUSION

This study investigated Al-based measurement prediction
for proactive inter-cell mobility in road-embedded mobile
networks. Achieving high prediction accuracy is challenging
when using only mixed fixed-speed datasets in real-world
scenarios. Constructing dynamic driving mode datasets that
realistically mimic vehicle behavior, including not only
typical scenarios but also various worst-case situations such
as traffic congestion, significantly enhances model training
and prediction performance. These results highlight the
importance of designing realistic and comprehensive datasets
to improve Al-driven vehicular mobility support.
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Fig. 2. CDF of all predicted samples in the future prediction sequence
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Fig. 3. CDF of the last sample in the future prediction sequence

TABLE L SIMULATION PARAMETERS
Parameter Value
Channel model UMi (Urban Micro) [6]
Frequency 30 GHz (FR2)
Bandwidth 80 MHz
Subcarrier spacing 120 kHz
ISD (deployment) 200m (one-sided upper)
BS power 46 dBm
Measurement method sliding
Measurement object RSRP
L1 average sample number 5
L3 filtering coefficient (k) 19
Observation Window Time (owt) 400 msec
Prediction Window Time (pwt) 400 msec
AI/ML Model XGBoost (typel)
DDM: no
- S1: fixed 60 km/h
- S2: fixed 80 km/h
UE (Car) Speed - 53 fixed 100 km/h
DDM: yes
-VS: 50-120 km/h
UE (Car) Type S: Sedan, U: SUV, T: Truck

RSRP: Reference Signals Received Power, DDM: Dynamic Driving Mode, VS: Variable

Speed
TABLE II. TEST CASES
Case ID Scenario DS#1 Tr DS#2 Tr DS#3 Tr DS#4 Tr DS#1 Te DS#2 Te DS#3 Te DS#4 Te
S1 S2 S3 DDM VS S1 S2 S3 DDM VS

€001 Baseline ves yes
C002 Baseline es ves
C003 Baseline €s ves
C004 Baseline yes yes
€005 GC#1 yes yes
C006 GC#1 es yes
C007 GC#l1 es yes
C008 GC#2 yes €s es yes
C009 GC#1 yes yes
€010 GC#1 yes es
Co11 GC#1 yes yes
€012 GC#2 yes yes yes yes

GC: Generalization Case, DS: Data Set, Tr: Train, Te: Test, S1: fixed 60 km/h, S2: fixed 80 km/h, S3: fixed 100 km/h, DDM: Dynamic Driving Mode, VS: Variable Speed (50-100km/h)
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