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Abstract— Future vehicles require ultra-reliable, low-
latency, and high-capacity wireless connectivity for autonomous 
driving and entertainment services such as XR. This paper 
investigates AI-based measurement prediction for proactive 
handover in road-embedded mobile networks, training models 
on simulated mobility data to minimize prediction errors. 
Evaluation across various test cases demonstrates measurement 
prediction performance and provides generalization guidelines 
for AI-driven vehicular inter-cell mobility. 
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I. INTRODUCTION 
Conventional mobility mechanisms, such as L3 handovers 

(e.g., basic HO, CHO) and L1/L2-triggered mobility (LTM), 
rely on current measurements and events to trigger cell 
changes, but these reactive approaches[1][2] may degrade 
performance in high-mobility and dense cell scenarios. As an 
alternative, AI-based models have been proposed to predict 
future signal quality or mobility events from past 
measurements[3]. This paper investigates AI-based 
measurement prediction in road-embedded mobile networks 
to support ultra-reliable, low-latency, and high-capacity 
connectivity. Experimental results demonstrate the feasibility 
of measurement prediction using diverse driving datasets and 
provide guidelines for achieving generalization. 

II. BACKGROUND AND RELATED WORK 
3GPP has actively promoted AI/ML integration in mobile 

networks, including CSI prediction/compression, beam 
management, energy saving, load balancing, and mobility 
optimization [4]. For NR-based AI/ML mobility (proactive 
inter-cell mobility), use cases such as RRM measurement 
prediction, event prediction, and RLF prediction have been 
defined, along with evaluation methodologies, metrics, and 
reported performance. System-level simulation (SLS) 
methodologies, metrics, and results have also been presented 
to validate overall effectiveness [5]. 

If an AI/ML model can accurately predict measurement 
results within a specific future time interval, proactive inter-
cell mobility mechanisms can be designed on top of existing 
reactive frameworks (e.g., Basic HO, CHO, LTM). Accurate 
prediction, however, requires valid training datasets, which 
are costly and difficult to obtain from uncontrolled real 
environments. To address this, simulation environments 
resembling real-world conditions are essential for generating 
effective training data. Moreover, ensuring strong 

generalization allows the trained models to remain robust 
across diverse mobility scenarios. 

III. PROPOSED AI-BASED PREDICTION FRAMEWORK 
In a road-embedded mobile network, all measurements are 

performed by a UE mounted on the top of a vehicle and 
correspond to the Reference Signal Received Power (RSRP). 
The measurement methods are categorized into sliding and 
non-sliding approaches. In the sliding approach, Mr, Mn, and 
Fn are generated at the same sampling interval (e.g., 20 ms), 
where Mn represents the average of recent Mr samples and Fn 
is obtained through L3 filtering using Mn and the previous 
Fn−1. In contrast, in the non-sliding approach, Mn and Fn are 
generated at longer intervals (e.g., every 80 ms for p=5), while 
in both methods the initial condition is set as Fn0 = Mn0. 

 
Fig. 1. AI/ML Model type1 

Fig. 1 illustrates the structure of the proposed AI/ML 
Model Type 1. The model takes as input the time step and past 
measurements from the previous, current, and next cells, and 
outputs predicted future measurements for the same cells. In 
the simulation, actual future measurements are available, 
enabling training and evaluation based on the mean absolute 
error between predicted and actual values, with particular 
focus on the final prediction step. For example, with a 20 msec 
time step and an observation window of 200 msec, the input 
contains 11 past samples, while a 400 msec prediction window 
results in 21 samples for both Past and Meas cells. 

IV. SIMULATION AND PERFORMANCE EVALUATION 
The road for the road-embedded mobile network is a 4 km 

straight, six-lane highway, with three lanes in each direction. 
Although base stations are deployed along the entire stretch, 
measurements are collected only within the central 2 km 
segment. Vehicle (UE) speeds follow either a fixed-speed 
mode (dynamic driving mode, DDM = no) or a dynamic 
driving mode (DDM = yes), where vehicles travel at 50–120 
km/h, maintain safe distances, follow lanes, and perform lane 
changes according to VANET highway driving algorithms. 
Specific simulation parameters are listed in Table I. The 
generated vehicle datasets (DS) are split into training (Tr DS) 
and testing (Te DS) sets for AI/ML model training and 
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evaluation, with identical environments denoted by the same 
DS#no. Generalization Case #1 (GC#1) uses different train 
and test datasets, while Generalization Case #2 (GC#2) mixes 
data from multiple speeds (S1, S2, S3) within a single DS. 
Table II summarizes 12 cases of dataset usage and 
generalization, where cases using the same DS for both 
training and testing are referred to as the baseline. Figs. 2 and 
3 show the CDFs of the absolute errors for all samples and the 
final sample, respectively. 

The prediction rankings for Case IDs in Table II (Fig. 2 
and Fig. 3) are generally consistent. Performance for the final 
sample in Fig. 3 is lower than that for all samples in Fig. 2, 
indicating decreasing accuracy for longer forecast horizons. In 
the baseline, where a DS was split into training and evaluation 
sets, prediction was highly accurate. Lowest performance was 
observed for C005 and C008, due to limited generalization of 
models trained on S1 (60 km/h) or mixed DS when applied to 
DDM VS test DS. Conversely, C011, trained on DDM VS DS, 
achieved superior accuracy on the S3 (100 km/h) test DS, 
reflecting typical highway speeds (90–110 km/h) and scarcity 
of low-speed data. 

V. CONCLUSION 
This study investigated AI-based measurement prediction 

for proactive inter-cell mobility in road-embedded mobile 
networks. Achieving high prediction accuracy is challenging 
when using only mixed fixed-speed datasets in real-world 
scenarios. Constructing dynamic driving mode datasets that 
realistically mimic vehicle behavior, including not only 
typical scenarios but also various worst-case situations such 
as traffic congestion, significantly enhances model training 
and prediction performance. These results highlight the 
importance of designing realistic and comprehensive datasets 
to improve AI-driven vehicular mobility support. 
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Fig. 2. CDF of all predicted samples in the future prediction sequence 

 
Fig. 3. CDF of the last sample in the future prediction sequence

TABLE II.  TEST CASES 
Case ID Scenario DS#1_Tr 

S1 
DS#2_Tr 

S2 
DS#3_Tr 

S3 
DS#4_Tr 
DDM VS 

DS#1_Te 
S1 

DS#2_Te 
S2 

DS#3_Te 
S3 

DS#4_Te 
DDM VS 

C001 Baseline yes    yes    
C002 Baseline  yes    yes   
C003 Baseline   yes    yes  
C004 Baseline    yes    yes 
C005 GC#1 yes       yes 
C006 GC#1  yes      yes 
C007 GC#1   yes     yes 
C008 GC#2 yes yes yes     yes 
C009 GC#1    yes yes    
C010 GC#1    yes  yes   
C011 GC#1    yes   yes  
C012 GC#2    yes yes yes yes  

GC: Generalization Case, DS: Data Set, Tr: Train, Te: Test, S1: fixed 60 km/h, S2: fixed 80 km/h, S3: fixed 100 km/h, DDM: Dynamic Driving Mode, VS: Variable Speed (50-100km/h)

TABLE I.  SIMULATION PARAMETERS 
Parameter Value 

Channel model UMi (Urban Micro) [6] 
Frequency 30 GHz (FR2) 
Bandwidth 80 MHz 
Subcarrier spacing 120 kHz 
ISD (deployment) 200m (one-sided upper) 
BS power 46 dBm 
Measurement method sliding 
Measurement object RSRP 
L1 average sample number 5 
L3 filtering coefficient (k) 19 
Observation Window Time (owt) 400 msec 
Prediction Window Time (pwt) 400 msec 
AI/ML Model XGBoost (type1) 

UE (Car) Speed 

DDM: no 
- S1: fixed 60 km/h 
- S2: fixed 80 km/h 
- S3: fixed 100 km/h 
DDM: yes 
-VS: 50-120 km/h 

UE (Car) Type S: Sedan, U: SUV, T: Truck 
RSRP: Reference Signals Received Power, DDM: Dynamic Driving Mode, VS: Variable 
Speed 

718


