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Abstract— Recent progress in text-to-motion has advanced
both 3D human motion generation and text-based motion con-
trol. Controllable motion generation (CoMo), which enables in-
tuitive control, typically relies on pose code representations;
however, discrete pose codes alone cannot capture fine-grained
motion details, limiting expressiveness. To address this limita-
tion, we propose a method that augments pose code—based latent
representations with continuous motion features using residual
vector quantization (RVQ). This approach preserves the inter-
pretability and manipulability of pose codes while effectively
capturing subtle motion characteristics such as high-frequency
details. Experiments on the HumanML3D dataset show that our
model reduces the Fréchet Inception Distance (FID) from 0.041
to 0.015 and yields a slight improvement in Top-1 R-Precision
from 0.508 to 0.510. Qualitative analysis of pairwise direction
similarity between pose codes further demonstrates the model’s
controllability for motion editing.

Keywords—Motion reconstruction, discrete representation
learning, residual vector quantization (RVQ), text-to-motion,
controllable motion generation

[. INTRODUCTION

Text-to-motion for 3D human motion generation has
become an essential research direction, offering broad
applications in VR, animation, and robotics. By predicting
human joint movements directly from text, it produces
realistic motions that enhance virtual interactions, improve
robotic action prediction, and streamline animation
production.

Beyond motion generation itself, recent work has
increasingly focused on motion editing by leveraging
intermediate model representations. Among these approaches,
controllable motion generation (CoMo) [1] draws inspiration
from pose scripts, assigning semantic meaning to pose codes
and constructing final poses by combining them. This design
improves the interpretability of latent representations while
enabling temporal modification of pose codes to alter poses at
specific timesteps. As a result, CoMo provides both fine-
grained motion control and intuitive accessibility for user-
driven motion editing.

However, pose codes are inherently limited to a finite set
of states, and pose latent representations are designed to
represent specific keyframe poses. Consequently, a latent
space formed solely by pose code combinations cannot fully
capture continuous motion dynamics. To address this
limitation, we propose to compute and quantize the residual
between continuous latent representations and pose
representations constructed from pose codes, thereby
expanding the representational capacity. Moreover, since pose
codes are directly used for control, their combinations must
avoid unwanted interference to ensure independent and
reliable manipulation. This paper introduces a learning
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framework designed to balance these constraints, yielding
motion representations that are both interpretable and
manipulable. The main contributions of this work are as
follows:

e  We apply residual vector quantization between pose

latent representations, constructed from pose code
combinations, and continuous motion features to
enhance motion reconstruction performance.

We design the model to preserve the disentanglement
property of pose codes while effectively capturing
fine-grained motion details.

Through t-distributed stochastic neighbor embedding
(t-SNE) visualization and pairwise direction similarity
analysis, we quantitatively and qualitatively examine
how disentanglement among pose codes evolves
during training, providing insights into the
controllability of the learned representation.

II. RELATED WORK

A. Discrete Representation Learning

Vector quantized variational autoencoder (VQ-VAE) [2]
has been widely applied in various domains such as image and
speech synthesis [3, 4]. It proposes to quantize continuous data
into discrete codes and leverage a codebook to model the data
distribution in a discrete embedding space. This approach
alleviates the mode collapse problem of conventional
variational autoencoder (VAE) [5], providing more stable and
higher-quality results.

Such methods have been extended to the motion
generation domain, where several models [6, 7, 8] build upon
VQ-VAE [2]. By quantizing continuous motion data into
discrete representations and reconstructing them back into
motion, these methods approximate the continuous motion
space with a set of discrete vectors in a codebook.

T2M-GPT [6] employs VQ-VAE [2] as a motion tokenizer
to represent motion as tokens, and then uses a Transformer-
based model [9] to predict motion tokens from text in a two-
stage procedure for 3D motion generation. This tokenization
strategy has been further refined, opening opportunities to
integrate language models and even large language models
(LLMs).

MotionGPT [7] builds on the close relationship between
motion representation and natural language. It jointly models
motion tokens and text tokens, enabling bidirectional learning
for both text-to-motion and motion-to-text tasks. This unified
modeling allows a single framework to perform a wide range
of motion-related tasks, including motion generation and
description.

Parco [8] decomposes the human body into six distinct
parts and models motion tokens independently for each,
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Fig. 1. Overall architecture.

thereby enabling part-aware modeling that facilitates the
generation of motions specific to individual body parts.

In addition to generation, recent studies have introduced
models for text-based motion editing. For example, some
approaches separate the upper and lower body for editing [10],
while others adopt masking techniques to enable joint-level
editing directly from text [11]. In these methods, users provide
descriptive text about the desired modification, and a
generative model such as a Transformer [9] predicts the
corresponding motion tokens. The edited tokens are then used
to modify the original motion accordingly.

Meanwhile, CoMo [1], inspired by PoseScript [12],
proposes to assign explicit semantic meaning to pose codes
that constitute the latent representation of motion. Each pose
is expressed as a combination of pose codes, improving the
interpretability of the latent space. This design enables
intuitive motion editing, where users can manipulate specific
pose codes corresponding to desired semantics. For instance,
replacing the pose code “L-arm slightly bent” with “L-arm
fully bent” adjusts the bending degree of the left arm. By
leveraging such discrete representations learned from motion
data, these approaches provide effective solutions for diverse
motion-related tasks.

B. Residual Vector Quantization

Conventional vector quantization (VQ) has long been used
as an effective approach for learning discrete representations.
However, the process of discretizing continuous data
inevitably causes information loss [13]. Moreover, a single
vector quantization step may lack sufficient capacity to
effectively represent diverse motion data.

Residual vector quantization (RVQ) addresses these
limitations by constructing a richer latent space capable of
capturing broader contextual information without suffering
from codebook collapse [14]. Compared to standard VQ,
RVQ is able to represent motion features ranging from low-
frequency to high-frequency components, with repeated
quantization steps progressively enhancing the representation
of high-frequency details [15]. The method operates by
quantizing the residual error left after each quantization step
and accumulating it into the existing code representation,
thereby compensating for errors incurred during
discretization.

Analogous to high-order spline interpolation, which
approximates a continuous function using multiple spline
bases, RVQ decomposes a continuous representation into
multiple sets of discrete codes through iterative quantization.
This process enables a more fine-grained approximation of the
continuous latent space [16]. As a result, RVQ effectively
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converts subtle details within continuous representations into
discrete codes, capturing high-frequency information and fine
variations that are difficult to model with a single quantization
stage.

III. METHODOLOGY

Fig. 1 provides an overview of our framework. The input
motion sequence is processed by both a pose parser and a 1D
convolutional neural network (CNN) encoder to obtain the
corresponding pose latent representation and continuous la-
tent representation. The residual between them is then com-
puted and quantized. Finally, the pose latent representation
and the quantized residuals are aggregated and fed into the
decoder to reconstruct the motion.

A. Pose Codebook

Following CoMo [1], we define a pose codebook C =
{c,N_, © RPe¢ where N is the number of pose codes and D, de-
notes their dimensionality. Each pose code encodes spatial se-
mantics, such as L-arm slightly bent or L-arm fully extended,
and is mapped to one of K predefined categories. These cate-
gories capture motion-related attributes, including joint an-
gles, inter-joint distances, relative positions and orientations,
and ground-contact states.

B. Pose Code Extraction & Pose Code Aggregation

Given a motion sequence of length L, M = {p;}}_; < R?,
we downsample it with a stride [ to obtain M; = {p;« l}f;g c
RP, where D denotes the dimensionality of each pose p;, and
Ly = L/l represents the downsampled sequence length. The
downsampled motion M, is then passed into a pose parser P,
which follows the heuristic rules defined in CoMo [1] to
determine whether each pose p; satisfies the semantics of a
pose code c, € C. Formally, this can be expressed as:
P(en pi) ~ {0,1}.

As a result, the downsampled motion M is transformed
into a sequence of K-hot vectors Zj,, each of dimension N:

Zk = {{?(cnrpixl)}rl\zgl}iiiy (1)
Next, by referencing the pose codebook, the sequence

Z, € RN is converted into a pose latent sequence Z =
{Zi}fg1 c RDC:
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Fig. 2. Motion encoder (left) and decoder architecture (right).

C. Residual Vector Quantization

During the construction of pose latent representations,
downsampling inevitably removes certain keyframe poses,
weakening temporal continuity. As a result, important pose
information that explains variations at specific timesteps may
be lost. This issue is particularly severe for fast actions or fine-
grained movements, leading to degraded motion
reconstruction performance.

To mitigate this, we apply RVQ to recover the missing
details from the pose latent representations and enable richer
motion modeling. A motion sequence M € RE*P is first

encoded by a 1D convolutional encoder &, as illustrated in Fig.

2, producing a continuous latent representation £(M) =
{hi}fgl c RPe¢. The initial residual is then computed between
the encoder outputs hy.;, and the pose latent representation
sequence Z.,:

r©® = hyp, — 2y, €)
At the v-th quantization stage, the residual is quantized as
0 = (1) = argmin,g o [ ~ 1
rO) — ) _ F0) 4

where Q(+) denotes the quantization process. At each stage
v =1{0,1,--,V}, the residual r® is mapped to the nearest
code entry from the residual codebook

R = (r{}" < RP. (5)

The quantized residuals #% are accumulated into the pose
latent representations, resulting in the final latent feature

sequence:

(6)
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This process compensates for fine-grained details not captured
by the original pose latent representations, yielding a more
expressive motion representation. Finally, the enhanced latent
features F are decoded by D, as illustrated in Fig. 2, to
reconstruct the motion M = D(F) € RE*P.

D. Loss Functions

The reconstruction 10ss L,...,ns 1s defined as the smooth L1
distance between the input motion M and the reconstructed
motion M. This term enforces the model to accurately
reproduce the overall structure and poses of the motion,
thereby serving as the foundation for motion reconstruction:

Lyecons = ”M - M”l' ()
The velocity operator V(-) computes inter-frame velocity
information from a motion sequence. Based on this, the
velocity loss L,,; measures the difference in frame-to-frame
variations between the input and reconstructed motions,
ensuring temporal consistency:
— L-1 _ i

VM) = {pirs = PHIL Loer = [V = VD], (8)
The commitment 1oss L y,mi; Minimizes the discrepancy
between the residual ™ and its quantized counterpart #®
at each quantization stage, allowing the quantization code-
books to learn residual representations in a stable manner. In
particular, during error computation at the first quantization
stage, a stop-gradient is applied to the pose latent representa-
tion z,;, to avoid interfering with the alignment of pose
codes:

14
Leommit = Z”T(v) - Sg(?(v))”z' €©)]

v=0

where 0 = hy,;, —sg(zy.,) and sg(-) denotes the stop-gra-
dient operator.

Finally, the overall training objective is defined as a
weighted sum of the three components:

Lfinal = Lrecons + ﬂLvel + V‘Ccommit' (10)

where f and y are hyperparameters.

IV. EXPERIMENT

A. Dataset

We conducted experiments on the widely used text-to-
motion dataset HumanML3D [17]. The dataset consists of
14,616 motion samples and 44,970 associated text
descriptions, collected from AMASS [18] and HumanAct12
[19]. Each motion sample is paired with up to three text
descriptions, and data augmentation is performed using
mirroring. Motion sequences are standardized to a frame rate
of 20 fps. The dataset is divided into training, validation, and
test sets with splits of 80%, 5%, and 15%, respectively.

B. Implementation Details

Our model is trained by randomly sampling a pivot point
from a motion sequence and cropping a subsequence of
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Fig. 3. Qualitative comparison with baseline models. The first row shows motion reconstruction results for the text description “a man
spins in a counterclockwise circle three times with his hands in front of him.” The second row shows results for the text description “a
person doing specific moves with legs and hands while doing boxing.

TABLE L. Quantitative results on the HumanML3D [3] test set. The best performance is bold.
R Precision T
Methods FID | MM-Dist 1
Top 1 Top 2 Top 3
Real Motion 0.511%003 0.703%003 0.797+002 0.002%000 2.974+008
T2M-GPT [6] 0.501%002 0.692%002 0.785+002 0.070%00!1 3.072+009
Parco [8] 0.503+003 0.693%003 0.790%002 0.021=000 3.019%007
CoMo [1] 0.508+002 0.697+002 0.792+002 0.041%000 3.003+006
Ours 0.510+002 0.700+002 0.795+002 0.015+000 2.995+006

length 64 centered at this pivot as the input. Each input se-
quence is temporally downsampled by a factor of 4, and two
quantizer layers are used in the quantization process. The
codebooks consist of two types: a pose codebook and a resid-
ual codebook. The pose codebook contains 392 vectors of di-
mension 512, while the residual codebook contains 64 vec-
tors of dimension 512. In our experiments, all quantization
layers share the same residual codebook.

Training is performed with a batch size of 256. The learn-
ing rate is linearly warmed up during the first 1,000 iterations,
reaching a final value of 2 X 10™#. Following MoMask [12],
we adopt an exponential moving average (EMA)-based up-
date strategy and a code reset technique to stabilize codebook
training. The hyperparameters for the loss are set to § = 0.5
and y = 0.02. All experiments are conducted on an NVIDIA
A100-SXM4-80GB GPU.

C. Metrics

We adopt the evaluation protocol proposed in T2M [17]
and employ the following metrics. Fréchet inception distance
(FID) measures the distributional difference between real
motions and reconstructed motions, where lower values indi-
cate better reconstruction quality. Top-R precision evaluates
how well the reconstructed motion semantically aligns with
its corresponding text description. Multimodal distance
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(MM-Dist) computes the average Euclidean distance be-
tween reconstructed motion embeddings and their corre-
sponding text embeddings.

D. Results

Following the evaluation protocol of T2M-GPT [6], the
model selected for final testing is the one that achieves the
lowest FID on the validation set. Table 1 reports the mean
values and 95% confidence intervals obtained over 20 evalu-
ation runs. Our proposed model achieves a significantly
lower FID compared to the baseline, indicating superior mo-
tion representations. Furthermore, it yields a slight improve-
ment in Top-R precision, demonstrating better semantic
alignment between the generated motions and the corre-
sponding text descriptions.

Qualitative comparisons between CoMo and our proposed
model are illustrated in Fig. 3. In the first case, the text de-
scription requires the subject to perform three rotations.
While the reconstructed motion from CoMo fails to complete
all three rotations, our model successfully performs the full
sequence. In the second case, our model produces motions
with less variability than CoMo, resulting in trajectories that
are closer to the ground-truth motion.
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Fig. 4. (a) t-SNE projection of pose codebook entries after training. (b) Pairwise cosine similarity of pose codes after unit vector

normalization.

Beyond these results, we further analyze the disentangle-
ment property of pose codes, which is crucial for controlla-
bility. Fig. 4(a) presents a t-SNE visualization of the learned
pose code embeddings, projected into two dimensions. The
results show that certain categories, such as R-elbow angle
and L-elbow angle, exhibit alignment patterns consistent with
the regression task objective. Fig. 4(b) visualizes pairwise di-
rection similarity by normalizing pose codes into unit vectors
and computing their inner products. Pose codes within the
same category tend to form subspaces in the embedding
space, while those from different categories exhibit similari-
ties close to zero. This suggests that, during motion recon-
struction, pose codes implicitly maintain independence
across categories.

V. CONCLUSION

In this paper, we proposed a residual vector quantization
framework to overcome the limited expressiveness of pose
latent representations. By augmenting discrete pose codes
with quantized residual features, our model preserves the in-
terpretability and controllability of pose codes while captur-
ing fine-grained motion details that are difficult to model with
discrete codes alone. Experiments on HumanML3D demon-
strated that our approach significantly improves reconstruc-
tion performance, achieving lower FID scores and higher R-
Precision compared to prior methods. Furthermore, visuali-
zation and similarity analysis suggested that, while some
cases reveal incomplete preservation, the disentanglement of
pose codes is largely maintained, enabling controllable mo-
tion editing.

Beyond improving motion reconstruction, the proposed
framework highlights the potential of combining discrete in-
terpretable representations with residual quantization for gen-
erative modeling. We believe that this approach can serve as
a strong generative prior, and future work will explore inte-
grating our method into motion generators and extending it to
broader tasks in text-to-motion, motion editing, and robotics
applications.
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