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Abstract—Recent advances in deep learning have promoted au-
tonomous driving, but adversarial attack methods on autonomous
driving systems revealed safety vulnerabilities. However, existing
studies have focused solely on manipulating vehicle control (e.g.,
steering) without explicit attack targets, limiting the effectiveness
of attacks in real-world driving environments. To address this
limitation, we propose a novel adversarial attack method against
autonomous driving that can induce collisions with specific target
objects. The proposed method generates adversarial pertur-
bations that reflect the relative position of the target object
during autonomous vehicle motion. The generated adversarial
perturbations are injected into the autonomous vehicle on a
frame-by-frame basis, enabling the vehicle to collide with the
target object. Experimental results on the Udacity’s self-driving
car simulator show that the proposed method induces collisions
with high success rates. Furthermore, we demonstrate that the
proposed method can precisely guide an autonomous vehicle
toward target objects to induce collisions.

Index Terms—adversarial attack, autonomous driving, vehicle
collision, object detection

I. INTRODUCTION

An autonomous driving system enables a vehicle to per-
ceive its environment and assess potential hazards using data
collected from various sensors (e.g., camera images, distance-
sensing data) without human intervention [1]. However, fatal
accidents involving autonomous vehicles continue to occur.
Recent studies have showed that safety vulnerabilities to
adversarial attacks can be exploited to cause traffic sign
misrecognition [2], [3].

To identify the adversarial vulnerabilities of autonomous
driving systems, various attack methods have been studied.
A representative method is the patch-based attack, which
generates adversarial perturbations in the form of physical
patches to manipulate vehicle steering of autonomous driving
systems [4]. However, its effectiveness is limited due to the
human-perceptible nature of the patches. To address this lim-
itation, gradient-based attacks have been proposed, operating
under scenarios where the attacker has access to the vehicle’s
sensor data [5]. These methods add imperceptible adversarial
perturbations into the input images of the autonomous driving
system. However, they are generally limited to relatively low-
level manipulations, such as lane departure. Moreover, the lack
of explicit attack objectives—such as inducing collisions with
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target objects (e.g., cars or pedestrians)—further limits their
effectiveness. Attacking an autonomous vehicle with explicit
attack objectives requires both identifying the target object
and continuously tracking its position. However, as the vehicle
moves, the relative position between the target object and
the autonomous vehicle changes in real-time. Consequently,
inducing a precise collision remains challenging, even when
the target object is stationary.

Therefore, we propose a novel adversarial attack method
against autonomous driving systems that can induce collisions
with target objects. The proposed method precisely controls
a victim vehicle with an autonomous driving system to mali-
ciously collide with the target object. Specifically, the proposed
method utilizes object detection to identify the position of
the target object in real-time and generates perturbations that
manipulate the victim vehicle’s steering to direct it toward
the target’s center. These perturbations are added frame-by-
frame into the victim vehicle’s front camera images. This
process continuously reflects the relative position of the target
object during victim vehicle motion, thereby enabling precise
collision induction.

We evaluated the effectiveness of the proposed method using
Udacity’s self-driving car simulator, which supports various
driving scenarios. The results show that the proposed method
successfully induced collisions with various target objects
at high success rates. Furthermore, the quantitative analysis
demonstrated that it can precisely guide an autonomous vehi-
cle into target objects to induce collisions.

The main contributions of this paper are as follows:

1) Proposing a novel adversarial attack method for au-
tonomous driving systems that can induce collisions with
target objects at a high success rate.

2) Designing an adversarial perturbation generation mech-
anism that enables precise collisions by continuously
reflecting the target object’s position.

3) Validating the effectiveness of the proposed method
through Udacity’s self-driving car simulator under vari-
ous driving scenarios.

This paper is organized as follows. Section II reviews related
work. Section III explains the proposed method and Section IV
presents the evaluation. Finally, Section V concludes the paper.
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Fig. 1. Overview of the proposed method: (a) the training phase and (b) the attack phase.

II. RELATED WORK

A. End-to-end Autonomous Driving Model

An autonomous driving system enables a vehicle to perceive
its environment through various sensors and make driving
decisions without human intervention [6]. While conventional
approaches employ a hierarchical architecture composed of
detailed modules for planning, control, and perception, recent
end-to-end learning models (i.e., e2e models) integrate these
modules into a single model. These models directly output
control signals for planning autonomous driving from sensor
data. This approach can reduce redundant computations and
unnecessary information transfer between modules, thereby
improving the efficiency and response speed of the system [6],
[7]. However, since the e2e model integrates the input–output
process into a single model, subtle perturbations applied
to the input data can directly influence the vehicle control
parameters—such as steering or throttle—without any separate
filtering or verification process. Due to this structural charac-
teristic, e2e models are considered inherently more vulnerable
to adversarial attacks [8].

B. Adversarial Attacks on Autonomous Driving Model

An adversarial attack refers to a technique that induces a
deep learning model to generate incorrect outputs by adding
imperceptible perturbations to raw data [8]–[10]. Fast Gradient
Sign Method (FGSM) generates adversarial perturbations by
computing the sign of the loss function’s gradient so that
the loss increases [11]. Projected Gradient Descent (PGD)
adds random perturbations to the input image and then
generates adversarial perturbations through iterative updates
conducted over multiple steps, each starting from different ini-
tial states [12]. Generative Adversarial Network-based attacks
(GAN-based attacks) train a generator to produce realistic
fake data that can fool the discriminator, thereby generating
adversarial examples [13].

Recently, various methods that target autonomous driving
models have been proposed. Wu et al. [5] proposed two types
of adversarial attack methods (i.e., image-specific attack and
image-agnostic attack) against a regression-based e2e model
on the Udacity’s self-driving car simulator. These methods are
designed to guide the vehicle’s steering angle into a specific
direction. The image-specific attack generates adversarial per-
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turbations individually calculated for each front-view image to
manipulate the vehicle’s steering. The image-agnostic attack
uses a universal adversarial perturbation for all input images
to manipulate the steering. Zhang et al. [14] proposed an
image-agnostic white-box adversarial attack against an e2e
model, employing a multi-objective optimization function and
an adaptive weighting scheme to simultaneously manipulate
the vehicle’s steering angle and speed. Existing methods have
mainly focused on manipulating vehicle control parameters,
such as steering angle or throttle. However, methods targeting
complex scenarios—such as dynamically adjusting the degree
of steering manipulation in real-time or inducing collisions
with specific targets—have been relatively limited. To build
safer autonomous driving systems, it is required to develop
more practical adversarial attack methods that can induce
vehicle accidents in complex driving environments, such as
by inducing collisions with target objects.

III. PROPOSED METHOD

In this paper, we propose a novel adversarial attack method
that induces collisions with target objects by manipulating the
autonomous driving model of a victim vehicle. As shown in
Fig. 1, the proposed method consists of three components: a
Detection Model, an Adversarial Model, and an Autonomous
Driving Model. The Detection Model identifies the position
of an attacker-defined target object, while the Adversarial
Model manipulates the autonomous driving model by injecting
perturbations. Specifically, the proposed method operates in
two phases: training phase and attack phase. In the training
phase, the Adversarial Model is trained to generate adversarial
perturbations that induce collisions, using the detected target
object’s position as input. In the attack phase, front camera
images from the autonomous vehicle are intercepted via a
Man-in-the-Middle (MITM) attack and fed into the trained
Adversarial Model, which generates adversarial examples by
adding adversarial perturbations into the images. The gen-
erated adversarial examples can manipulate the autonomous
driving model, enabling it to control the victim vehicle’s
steering toward the target object to induce a collision. The
detailed process for each phase is described as follows.

A. Training Phase

In the training phase, the Adversarial Model is trained to
generate adversarial perturbations based on the target object’s
position. As shown in Fig. 1(a), the Detection Model identifies
the target object from the front camera image of the victim
vehicle and extracts its center x-coordinate. Subsequently, the
adversarial perturbation δ, generated by the Adversarial Model
G(·) based on the extracted x-coordinate, is defined as follows,

δ = G(tx, i) (1)

In Eq. 1, tx denotes the central x-coordinate of the target
object detected by the Detection Model, and i represents the
front camera image. The perturbation δ is added to i at the
pixel-level to generate the adversarial example iadv . To ensure
valid pixel intensities, values of iadv are clipped to the RGB

range [0, 255]. The attacked steering angle ŷ, predicted by the
autonomous driving model f(·) based on the adversarial input
iadv, is defined as follows,

ŷ = f(iadv) (2)

To optimize ŷ toward the target object position tx, the target
steering angle y is defined as follows,

y =
tx − 0.5W

0.5W
(3)

In Eq. 3, W denotes the width of i. The steering angle
of f is normalized to the range [-1, 1], where the values of
-1, 0, and 1 correspond to steering toward the left, center,
and right of i, respectively. This normalization corresponds
to the maximum steering range of the vehicle. To present the
target object position tx as the target steering angle, its relative
position is first computed as the difference between tx and the
i’s center x-coordinate 0.5W . This difference is then divided
by 0.5W to normalize it into the range [-1, 1], enabling the
relative position of the target object to be consistently mapped
to the steering angle range of f , regardless of W . The mean
squared error loss LMSE for training G is defined as follows,

LMSE = ||ŷ − y||22 (4)

Finally, by training G to minimize LMSE , the generator
G is optimized to produce perturbation that manipulates the
victim vehicle’s steering toward the target object.

B. Attack Phase

In the Attack Phase, the camera images of the victim
vehicle are intercepted, and the trained adversarial model G
is employed to perform adversarial attacks on the autonomous
driving system. First, the attacker defines the target object (i.e.,
human, car, bus, and traffic light) intended to induce a collision
with the moving victim vehicle. As shown in Fig. 1(b), the
Detection Model determines whether the defined target object
appears in the intercepted image i, and computes its position
to derive tx. Then, G utilizes tx and i as inputs and generates δ
that manipulates the prediction of f toward y. The generated
δ is added to i at the pixel level to produce the adversarial
example iadv. The adversarial example iadv generated through
this process is injected into the victim vehicle under the MITM
attack scenario by replacing the original input i. This process
is repeated frame-by-frame, causing f to predict ŷ in real-
time based on iadv . Consequently, the victim vehicle is steered
toward the target object according to ŷ, ultimately leading to
a collision.

IV. EVALUATION

We evaluate the effectiveness of our proposed method by
addressing the following research questions:

• RQ#1: Does the proposed method effectively induce
collisions with target objects?

• RQ#2: Does the proposed method precisely control ve-
hicle steering toward the target object?
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Fig. 2. Comparison of Attacked Steering Angle (red), Target Steering Angle (blue), and Steering Angle Error (green) for four different types of target objects.

A. Experimental Settings

To evaluate the attack performance of the proposed method,
we constructed a driving environment using Udacity’s self-
driving car simulator. To ensure stable driving without devia-
tion from the driving route, the vehicle’s speed was limited to
a maximum of 15 km/h. The target objects (i.e. human, car,
bus, and traffic light), commonly encountered in real-world
driving, were configured to remain stationary. The victim
vehicle employed NVIDIA’s DAVE2 [15], a representative
autonomous driving model. For object-avoidance training, we
built a dataset of 25,000 images collected from the simulator,
consisting of 12,000 target-object images and 13,000 track
images. The detection model adopted the YOLOv5 [16] archi-
tecture, pre-trained on the COCO dataset [17]. The adversarial
model was implemented based on the U-Net [18] architecture
and trained on images containing target objects from the
constructed dataset.

The evaluation metrics are defined as follows:
• Attack Success Rate (ASR)

=
# of Collisions

# of Encounters with Target
× 100

• Steering Angle Error (SAE)

= |Target Steering Angle − Attacked Steering Angle|

The environment and hyperparameters used in our eval-
uations are as follows: (1) Autonomous Driving Model:
NVIDIA Geforce RTX 4060 GPU, Python 3.8.10, Py-
Torch 2.0.1+cu118, and 50 epochs; (2) Adversarial Model:

TABLE I
COMPARISON OF ATTACK SUCCESS RATE FOR THE PROPOSED METHOD,

RANDOM PERTURBATIONS, AND WITHOUT PERTURBATIONS (W/O
PERTURBATIONS).

Methods Human Car Bus
Traffic-
Light

Avg.

Proposed
Method

80.0% 100.0% 100.0% 80.0% 90.0%

Random
Perturbations

10.0% 20.0% 20.0% 20.0% 17.5%

W/O
Perturbations

0.0% 10.0% 10.0% 20.0% 10.0%

NVIDIA Geforce RTX 3090 GPU, Python 3.8.10, PyTorch
2.0.1+cu118, and 10 epochs.

B. Experimental Results

(RQ#1) Effectiveness of the adversarial perturbations
in object collision: To evaluate RQ#1, we quantitatively
compared the ASR of adversarial perturbations generated by
the proposed method with that of random perturbations. As a
baseline, we also present the ASR without perturbations. The
comparison was conducted in a driving simulation involving
four different types of target objects (human, car, bus, and
traffic light). For each object, 10 attack trials were performed,
resulting in a total of 40 attacks. Table I presents the ASRs
of the proposed method, random perturbations, and W/O
perturbations for each target object. The proposed method
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achieved the highest average ASR of 90% across all target
objects. Notably, while random perturbations achieved 0%p
to 10%p higher ASR than W/O perturbations for each target
object, the proposed method achieved an ASR that was at least
60%p and at most 90%p higher. These results demonstrate that
the proposed method can generate adversarial perturbations
that effectively manipulate the steering of the victim vehicle,
inducing collisions with various types of target objects at a
high success rate.

(RQ#2) Target steering angle tracking performance of
the proposed method: To evaluate RQ#2, we assessed the
performance of the proposed method in manipulating vic-
tim vehicle steering toward the center of the target object,
measured by SAE. SAE is defined as the difference between
the Target Steering Angle, required for collision with the
target object, and the Attacked Steering Angle, manipulated
by the proposed method. A smaller SAE value, closer to zero,
indicates that the victim vehicle’s steering is more accurately
aligned with the target object. Fig. 2 illustrates the Target
Steering Angle (blue), Attacked Steering Angle (red), and SAE
(green) per frame for four types of target objects. The average
SAE values were 0.0083 (human), 0.0105 (car), 0.0120 (bus),
and 0.0101 (traffic light), while the maximum SAE values
were 0.0258, 0.0275, 0.0606, and 0.0269 for the same objects.
These represent an average SAE of approximately 1% and a
maximum of 6% relative to the steering angle range (i.e. [-1,
1]), indicating that the proposed method can precisely control
the victim vehicle while tracking the target object. These re-
sults demonstrate that the proposed method maintains accurate
steering by reflecting real-time positional changes, thereby
effectively guiding the victim vehicle to the target object.

V. CONCLUSION

In this paper, we proposed a novel adversarial attack method
against autonomous driving systems that precisely controls the
steering of a victim vehicle to induce collisions with target
objects at high success rates. The proposed method generates
optimized adversarial perturbations by reflecting the real-time
relative position of the target object during victim vehicle mo-
tion, and maliciously manipulates the victim vehicle’s steering
to collide with the target object. The experimental results
on the Udacity’s self-driving car simulator, which supports
various driving scenarios, show that the proposed method
achieved an average ASR of 90% across all target objects
and a low SAE close to zero. These results demonstrated
that the proposed method successfully induced collisions by
manipulating the victim vehicle’s steering to direct it toward
stationary target objects at high success rates.

For future work, we plan to extend adversarial attacks be-
yond steering control to other vehicle control parameters, such
as throttle, thereby enabling collision with dynamic targets. In
addition, we will investigate adversarial defense mechanisms
to enhance the robustness of autonomous driving models.
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