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Abstract—Autonomous driving requires perception systems
that balance accuracy with computational efficiency for safe and
reliable real-time operation. While camera-LiDAR fusion has
emerged as a powerful solution, most existing methods rely on
computationally expensive 3D backbones, limiting deployment
on resource-constrained vehicle hardware. We propose BEV-
ConvFusion, a novel 2D-domain fusion framework that over-
comes this limitation. Our approach first encodes sparse LiDAR
point clouds into dense multi-channel Bird’s-Eye View (BEV)
representations and extracts semantically rich features from RGB
images using a 2D CNN backbone. At the core of our design is
the Synergistic Cross-Attention Module (SynCAM), which refines
features through three sequential stages: spatial gating, bidirec-
tional semantic cross-attention, and feature refinement, enabling
reciprocal enhancement between modalities before fusion. By
eliminating 3D operations, BEV-ConvFusion achieves substantial
computational savings while maintaining high accuracy. Exten-
sive experiments demonstrate that our method achieves com-
petitive detection accuracy, significantly higher frame rates, and
superior robustness compared to unimodal baselines, highlighting
the effectiveness of 2D-domain fusion.

Index Terms—Multimodal Representation Learning, Au-
tonomous Driving, Cross-modal Attention, LIDAR-Camera Fu-
sion, Real-time Perception, Adverse Weather Robustness

I. INTRODUCTION

The pursuit of fully autonomous driving (AD) requires per-
ception systems that can interpret complex, dynamic environ-
ments with both high accuracy and strict real-time efficiency
[1]. Multimodal sensor fusion—particularly the integration of
LiDAR and cameras—has become a cornerstone of modern
AD perception stacks. Cameras provide dense semantic cues
such as texture, color, and object categories, but are notori-
ously sensitive to illumination changes and adverse weather.
Conversely, LIDAR sensors offer robust, illumination-invariant
geometric information, yet generate sparse point clouds that
lack semantic richness. Effective perception thus hinges on
bridging these complementary modalities [2].

A central challenge arises from their vastly different rep-
resentations: dense 2D pixel arrays versus sparse, irregu-
lar 3D point sets. Recent fusion methods typically employ
specialized 3D deep learning backbones, such as sparse 3D
convolutions or voxel-based networks, to process LiDAR data
before fusion. While powerful, these models impose pro-
hibitive computational demands, making them impractical for
embedded automotive hardware that must operate under strict
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real-time constraints required for safe vehicle deployment.
This computational bottleneck raises the critical question of
how to exploit the geometric strengths of LiDAR and the
semantic richness of images while remaining compatible with
real-time, resource-constrained deployment?

To address this, we propose BEV-ConvFusion, a fully 2D
fusion framework that avoids costly 3D operations. Our key
insight is to project LIDAR point clouds into a dense Bird’s-
Eye View (BEV) representation, encoding height, density,
and intensity in a multi-channel 2D grid. This representation
allows us to leverage efficient 2D convolutional networks
(CNNs), which are highly optimized on modern hardware,
for both modalities. To enable effective interaction between
the modalities, we introduce the Synergistic Cross-Attention
Module (SynCAM),a novel fusion block that refines features
in three stages: spatial gating, bidirectional semantic cross-
attention, and feature refinement, enabling robust bidirectional
interaction between image and LiDAR streams. Unlike con-
ventional concatenation or single-step attention mechanisms,
SynCAM explicitly models complementary cues, allowing
LiDAR geometry to sharpen camera semantics and vice versa.

The contributions of this work are threefold:

¢ A real-time multimodal fusion architecture that oper-
ates entirely in the 2D domain, reducing computation by
an order of magnitude compared to 3D backbones, while
maintaining competitive accuracy.

e A rich BEV representation for LiDAR that encodes
geometric structure in a dense, learnable form well-suited
to standard 2D CNNs.

o The Synergistic Cross-Attention Module (SynCAM), a
novel mechanism for cross-modal refinement that enables
camera and LiDAR features to enhance one another prior
to fusion, achieving superior robustness under challeng-
ing conditions.

Together, these innovations provide a practical path to-
ward real-time multimodal perception for autonomous driv-
ing, bridging the gap between high-performance fusion and
deployability on resource-constrained platforms.

II. RELATED WORK
A. LiDAR-Camera Fusion Strategies

Fusion strategies can be categorized by the stage of integra-
tion [3]. Early fusion combines raw inputs or shallow features
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Fig. 1. Overview of the proposed BEV-ConvFusion framework. LiDAR point clouds are projected onto dense bird’s-eye-view (BEV) feature maps via
a BEV backbone, while RGB images are processed through a 2D CNN backbone. The resulting modality-specific features, Fiyng and Fiey, are iteratively
refined using a sequence of Synergistic Cross-Attention Modules (SynCAMs), which align and exchange complementary geometric and semantic cues across
BEV and image domains. The fused representation is then passed through a feature pyramid network (FPN) and a lightweight YOLOX-style detection head

to jointly predict object classes, bounding boxes, and objectness scores.

(e.g., projecting LiDAR onto the image plane with depth as
an additional channel), but is sensitive to calibration errors
and sparse—dense alignment issues. Late fusion processes each
modality independently and merges only the final predictions,
offering robustness at the cost of cross-modal interactions.
Mid-level (deep) fusion integrates intermediate features and
has become dominant, yet many designs rely on costly 3D
backbones that hinder real-time use. Our approach also adopts
mid-level fusion, but avoids 3D bottlenecks through an effi-
cient 2D pipeline.

B. LiDAR Data Representation for Deep Learning

The unstructured nature of LiDAR point clouds poses a
central challenge for learning-based perception. Voxel-based
methods [4] discretize 3D space into volumetric grids, en-
abling the use of 3D convolutions, but at the expense of
extreme computational overhead. Point-based methods, such
as PointNet++ [5], directly operate on raw points, capturing
fine geometric detail but incurring expensive nearest-neighbor
searches that limit scalability. Pillar-based approaches, such
as PointPillars [6], project point clouds into vertical columns
(“pillars”) and encode them with a lightweight MLP. The re-
sulting pseudo-image is then processed by a standard 2D CNN
backbone in BEV space, thus eliminating 3D convolutions
while effectively exploiting spatial context. Compared with
these representations, Bird’s-Eye View (BEV) projections [7]
transform point clouds into dense, structured 2D maps that
preserve essential spatial cues while enabling compatibility
with highly optimized 2D CNNs. This trade-off provides a
compelling balance between geometric fidelity and efficiency,
though it inevitably introduces some loss of fine-grained 3D
detail. Our framework adopts this BEV representation to
maximize efficiency while compensating for information loss
through synergistic fusion with image features.

C. Attention Mechanisms for Multimodal Learning

Attention mechanisms, first popularized in natural language
processing [8], have become a cornerstone of modern deep

learning. In particular, cross-attention allows one modality to
selectively query another, thereby emphasizing features most
relevant to the downstream task. This flexible formulation
avoids forcing modalities into a rigidly shared feature space,
which risks erasing complementary information. However,
standard cross-attention modules are computationally demand-
ing due to quadratic complexity in feature map size, mak-
ing their deployment in real-time systems challenging. Our
proposed Synergistic Cross-Attention Module (SynCAM)
explicitly addresses this trade-off: it employs a structured
three-step process of spatial gating, bidirectional semantic
cross-attention, and feature refinement, ensuring both effi-
ciency and rich cross-modal interaction. By aligning attention
flow with the complementary strengths of LiDAR and camera
inputs, SynCAM achieves effective fusion while remaining
lightweight enough for real-time inference.

ITII. PROPOSED METHOD: BEV-CONVFUSION

Our proposed BEV-ConvFusion framework is designed as
a fully 2D convolutional pipeline to maximize efficiency and
real-time performance. The architecture consists of three main
stages: (1) parallel feature extraction from the image and
LiDAR BEV streams, (2) the Synergistic Cross-Attention
Module (SynCAM) for feature fusion, and (3) a unified
detection head for final object prediction.

A. Overall Architecture

As illustrated in Fig. 1, the model ingests synchronized RGB
camera images and LiDAR point clouds.

o The camera stream employs a pre-trained 2D Vision
backbone (e.g., Swin-Transformer [9] or ConvNeXt [10])
to extract multi-scale semantic features.

o The LiDAR stream first converts the raw 3D point
cloud into a structured 2D BEV representation, which
is then processed by a 2D CNN backbone to extract
corresponding spatial features.
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Fig. 2. Tllustration of the Synergistic Cross-Attention Module (SynCAM). The module takes image features (Fiyg) and BEV features (Fiey) as inputs
and refines them through three sequential stages: (1) Spatial Gating, where BEV-derived spatial priors suppress irrelevant image regions while emphasizing
object-relevant areas; (2) Bidirectional Semantic Cross-Attention, where gated image features provide semantic cues to the BEV stream and, reciprocally,
BEV features enhance the geometric grounding of image features, facilitated by relative position bias and learnable temperature per head; and (3) Feature
Refinement, where attended features are concatenated and passed through a feed-forward network with residual connections and normalization to stabilize the

fused representation.

The extracted feature maps are then synergistically merged
by one or more stacked SynCAM blocks. After iterative
refinement, the fused features are passed to a detection head
for bounding box prediction.

B. LiDAR BEV Representation

Fig. 3. Illustration of the three-channel BEV representation generated
from a single LiDAR scan. From left to right: the Height Map, which
encodes vertical structure; the Density Map, which reflects point distribution;
and the Intensity Map, which captures reflectance strength. Together, these
complementary channels provide a rich and discriminative 2D representation
of the 3D scene.

To avoid the computational overhead of 3D convolutions,
the raw LiDAR point cloud is projected into a multi-channel
Bird’s-Eye View (BEV) representation. Formally, given a point
cloud
(1)

P = {pi}g\ih Pi = (-7773/72»7“) € R47

where each point encodes spatial coordinates and reflectance
intensity, the 3D space is discretized into a 2D grid of size
H x W with a fixed resolution. For each grid cell (i, j), we
compute a set of statistics from the subset of points P;; C P
that fall within the cell boundaries. These channels provide
complementary geometric and semantic cues:

o Height Channel:

2

which records the maximum elevation within each cell.
This enables the model to differentiate tall structures
(e.g., vehicles, pedestrians) from flat surfaces (e.g., road
markings).

o Intensity Channel:

H;; = max z,
pEP;;

1;; = 3)

1
_— r
|Pij Z
PEP;;
which represents the average reflectance intensity, useful
for discriminating materials and object categories.

o Density Channel:

which encodes the logarithmic point density per cell,
mitigating sparsity variations and providing cues about
object solidity.
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This process yields a dense, image-like tensor
Mpe, € RFXWXCoer, 5)

where Cpe,, denotes the number of encoded channels (typically
three in our design).
C. Dual-Stream Feature Extraction

The two modalities are processed by independent 2D back-
bones to capture modality-specific multi-scale representations:

{Film g}lel = Encoder;,,,(Imagep ) (6)
{Féev}lL:1 = Encoderye, (Mpeo) @)

where {F},, } and {F},,} denote feature maps extracted at
different pyramid levels. For the image encoder, we employ a
powerful pre-trained backbone, such as Swin Transformer [9]
or ConvNeXt [10], to obtain semantic-rich contextual features.
For the BEV encoder, we adopt a 2D CNN backbone (e.g.,
ResNet [11] or EfficientNet [12]) to effectively extract spatial
structures from the BEV representation.

D. Synergistic Cross-Attention Module (SynCAM)

The core of our proposed fusion strategy is the Synergis-
tic Cross-Attention Module (SynCAM), which enables a
structured bidirectional refinement between image and BEV
features. Rather than relying on a single one-way attention
flow, SynCAM explicitly alternates the enhancement process
across modalities, allowing each to leverage complementary
strengths. As illustrated in Fig. 2, the module operates in three
sequential stages that progressively refine and align cross-
modal representations.

1) Stage 1: Spatial Gating: We first exploit the spatial prior
inherent in BEV features to guide the refinement of image
features. A convolutional block transforms the BEV feature
map Fj., into a spatial attention gate Gj., € RZ *W'x1
which suppresses irrelevant background regions (e.g., sky,
distant buildings) in the image stream and highlights object-
relevant areas:

Gpev = o(ConvBlock(Fpey)) 8)
Fimg_gated = Fimg © Gbev (9)

where o denotes the sigmoid function and © repre-
sents element-wise multiplication. The resulting feature map,
Fimg_gatea, 18 thus a spatially refined version of the original
image features, improving downstream cross-modal alignment.

2) Stage 2: Bidirectional Semantic Cross-Attention: After
spatial refinement, we perform bidirectional cross-attention
between the two modalities. To improve stability and ef-
ficiency, we adopt pre-normalization and adaptive pooling
before computing the attention.

Pre-Normalization. Both BEV and gated image features
are first flattened and normalized:

(10)
(1)

Fyop = LayerNorm (Flatten(Fp., )),

Fimg_gated = LayerNorm(Flatten(Fyg gated))-

Adaptive Pooling. To reduce redundant tokens and improve
memory efficiency, the features are pooled to a fixed grid size:

Fbev_pool = AdaptivePOOI(Fbeva (Hpooh Wpool));

(12)
F}7rLg_pool = AdaptivePOOI(Fimg_gated7 (Hpooh Wpool))a
(13)

Bidirectional Attention. We define the query, key, and
value projections for both BEV and image features as:
Qb = ngFbev_poola Kb = W?(Fbev_poolv VE) = W\b/ﬁ‘bev_poolv

Qi = WéFimg_pOOh Kz = W;{Fimg_pool7 ‘/z = Wli/ﬁimg_pool-
(14)
Then the bidirectional attention updates are given by:

KT
Fbev_attn = SOftmaX<Q\}}dT: > Vvi7

(15)
Fimg_attn = Softmax(M) %7

Vi

where Wq, Wi, and Wy are learnable projection matrices,
and dj, is the key dimension. This reciprocal attention flow
ensures that BEV geometry sharpens image semantics, while
image semantics enrich the BEV representation.

Residual Connections. The attention outputs are interpo-
lated back to the original resolution and fused with residual
connections:

Fbev_attended = Fbev + InterpOlate(Fbev_attn)» (16)
Fimg_attended = Fimg_gated + InterpOIate(Fimg_attn)- (17)

3) Stage 3: Feature Refinement: Finally, the attended BEV
and image features are fused into a unified representation
by first concatenating the two modalities along the channel
dimension and then projecting the result through a 1 x 1 convo-
lution, followed by batch normalization and ReL U activation:

Ffused = ReLU (BN(COHlel (Fbev_attended@Fimg_attended)))7
(13)
where @ denotes channel-wise concatenation.
To stabilize the fused representation, we apply a feed-
forward network (FFN) with residual connection and layer
normalization:

Frefined = Ffused + FFN(LayerNorm(Ffused))- (19)

The refined feature Fi.fineq is propagated to the next
SynCAM block, or, after the final block, to the detection head.

Unlike conventional cross-attention modules that directly
operate on the full-resolution feature maps, SynCAM incorpo-
rates spatial gating and adaptive pooling to reduce redundant
interactions and focus on semantically relevant regions. While
the overall computational complexity remains quadratic in
theory, in practice the reduced token count and gated attention
map lead to more efficient usage of computation and memory.

E. Detection Head and Loss Function

After the final SynCAM block, the fused features are
aggregated by a Feature Pyramid Network (FPN) to ensure
robustness across object scales. We employ a YOLOX-inspired
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decoupled head [13], which separates classification and regres-
sion branches. This design improves optimization stability by
preventing gradient interference between tasks.

The head outputs three predictions at each location: classi-
fication logits (L;s), objectness scores (Lop;), and bounding
box regression (Lppoz, L1). The total training loss is formu-
lated as:

Liotal = Lejs + @+ Lipog + Lobj + Ly, (20)

where:

o L.s: cross-entropy loss for classification.

o Lppor: An IoU-based regression loss (e.g., GIoU/CIoU)
responsible for the overall box alignment.

e Ly binary cross-entropy loss for objectness.

e Li: A smooth L1 loss applied directly to the bounding
box coordinates (e.g., center points, width, height). This
term complements the IoU loss, especially in early train-
ing stages, and helps stabilize the optimization.

The weighting coefficient o balances the regression loss
relative to classification and objectness terms. This is crucial
since bounding box regression typically has a different scale,
and without reweighting, optimization can become unstable
or biased toward one sub-task. In our experiments, we set
a = 5 to achieve stable convergence and improved detection
accuracy.

IV. EXPERIMENTS

A. Datasets and Implementation Details

Fig. 4. Example of a synchronized data pair from the dataset. Left: Front-
camera RGB image. Right: The corresponding LiDAR point cloud visualized
as a BEV density map.

Dataset.We evaluate our approach on the Adverse Weather
Data for Autonomous Passenger Vehicles dataset provided by
the AI-Hub project!. The dataset contains synchronized front-
camera images and 360° LiDAR point clouds collected under
diverse adverse weather conditions (e.g., rain, snow, fog).
Following the official split, we use 15,000 pairs for training
and 3,800 for validation. Labels are annotated as 2D bounding
boxes for five categories: vehicle, pedestrian, two-wheeler,
traffic sign, and traffic light. Fig. 4 illustrates an example
of synchronized input pairs, showing an RGB image and its
corresponding BEV LiDAR density map.

Implementation Details. Our implementation is based on
MMDetection 3.3.0 with PyTorch. For the image encoder,

I'This research used datasets from *The Open AI Dataset Project (Al-
Hub, S. Korea)’. All data information can be accessed through ’AI-Hub
(www.aihub.or.kr)’.

we use ConvNext-Tiny [10] pre-trained on ImageNet-1K [14],
while the BEV encoder employs a 2D ResNet-18 [11]. Models
are trained for 24 epochs with AdamW (Ir=1e~4, weight decay
0.05) on a single NVIDIA A100 GPU.

B. Component Selection

To identify the optimal unimodal backbone for the camera
stream, we benchmark several popular 2D detectors. Results
are summarized in Table I. ConvNeXt-Tiny [10] achieves the
highest accuracy (mAP@.50 = 73.3%), outperforming Swin-
Tiny [9] and EfficientNet [12]. Interestingly, YOLOvVS8-m [15]
shows notably lower accuracy in this domain, highlighting the
importance of backbone selection for robust feature extraction
under adverse conditions.

TABLE 1
PERFORMANCE OF CAMERA-ONLY 2D OBJECT DETECTION MODELS.
Backbone mAP@[.5:.95] | mAP@.50
EfficientNet [12] 50.3 69.1
ConvNeXt-Tiny [10] 54.3 73.3
YOLOv8-m [15] 334 51.6
Swin-Tiny [9] 52.0 71.0

From these results, ConvNeXt-Tiny [10] is selected as the
default backbone for subsequent fusion experiments.

C. Comparison with Other Approaches

We next compare our proposed BEV-ConvFusion with both
2D and 3D methods. Since the dataset provides only 2D
bounding box annotations, direct supervision for 3D detectors
is not available. To ensure a fair comparison, we converted
the outputs of 3D-only detectors (e.g., PV-RCNN, Voxel R-
CNN) into BEV representations and trained them with 2D
bounding box supervision projected onto the BEV plane. This
allows both 2D and 3D models to be evaluated under the same
annotation format. Results are presented in Table II.

o 2D-only baseline (ConvNeXt-Tiny [10]) achieves strong
performance (mAP@.50 = 73.3%), surpassing even the
best 3D model, PV-RCNN [16] (72.3%). This highlights
the maturity of modern image-based detectors.

e 3D-only models, while providing a strong geomet-
ric baseline, highlight the challenge of relying solely
on LiDAR under adverse weather conditions. For in-
stance, even the top-performing PV-RCNN [16] at 72.3%
mAP@.50 does not outperform the 2D-only baseline,
suggesting that geometric data alone is insufficient with-
out rich semantic context. This underscores the need for
effective sensor fusion.

o Fusion model (BEV-ConvFusion) achieves the best
performance (mMAP@.50 = 75.3%), clearly surpassing
both unimodal baselines. This confirms that our cross-
attention-based fusion effectively leverages the comple-
mentary strengths of camera and LiDAR.

The results emphasize that fusion is not merely additive;

it achieves synergistic gains by enhancing robustness in chal-
lenging weather.
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TABLE 11
PERFORMANCE COMPARISON WITH 2D AND 3D MODELS.

Modality | Method mAP@.50
2D-Only ConvNeXt-Tiny [10] 73.3
PV-RCNN [16] 72.3
Voxel R-CNN [17] 71.6
3D-Only SECOND [18] 68.6
PointRCNN [19] 66.4
Fusion BEV-ConvFusion 75.3

D. Ablation Studies

Impact of SynCAM Block Depth. To analyze the contribu-
tion of SynCAM depth, we vary the number of stacked blocks
from 1 to 4. Results are shown in Table III.

TABLE III
ABLATION STUDY ON THE NUMBER OF STACKED SYNCAM BLOCKS.
# SynCAM Blocks | mAP@.50
1 Block 73.6
2 Blocks 74.7
3 Blocks 75.3
4 Blocks 73.9

As presented in Table III, the model’s performance steadily
improves as the number of SynCAM blocks increases from
one to three, peaking at 75.3% mAP@.50. This trend demon-
strates that stacking blocks is crucial for enabling a deeper,
iterative refinement where camera and LiDAR modalities can
reciprocally enhance each other. However, the performance
declines with the addition of a fourth block. This suggests that
excessive depth leads to overfitting due to increased model
complexity and potential feature saturation. Therefore, we
selected a three-block configuration for our final model, as it
achieves the optimal balance between feature fusion capability
and generalization.

V. CONCLUSION

In this paper, we presented BEV-ConvFusion, a novel and
efficient LIDAR—camera fusion framework designed to recon-
cile the trade-off between accuracy and real-time performance
in autonomous driving perception. By projecting LiDAR point
clouds into a 2D bird’s-eye view (BEV) representation, our
method circumvents the need for computationally intensive
3D backbones and enables the entire pipeline to be executed
with highly optimized 2D convolutional architectures.

At the core of the framework lies the Synergistic Cross-
Attention Module (SynCAM), which introduces a structured
bidirectional refinement mechanism. Through alternating spa-
tial gating and bidirectional semantic cross-attention, SynCAM
ensures that both modalities iteratively enhance each other,
producing a robust joint representation that captures semantic
richness from images and geometric stability from LiDAR.

Comprehensive experiments demonstrate that BEV-
ConvFusion achieves strong detection performance,
outperforming unimodal baselines and rivaling state-of-
the-art 3D detectors, all while operating with substantially
lower computational cost. Moreover, the framework shows

increased robustness under adverse weather conditions, where
the limitations of camera-only systems become apparent and
LiDAR provides indispensable structural cues.

Overall, BEV-ConvFusion establishes an effective and ef-
ficient multimodal fusion paradigm, providing a practical
pathway toward safer and more reliable perception systems
for autonomous vehicles.
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