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Abstract—Large Language Models (LLMs) offer remarkable
capabilities across various natural language processing (NLP)
tasks. However, their high computational complexity and signif-
icant memory requirements during the training and inference
stages hinder their practical application. Cloud-edge computing
has emerged as a promising paradigm to overcome these limita-
tions by enabling the collaborative execution of LLM inference
across cloud and edge servers. This paper surveys recent research
on cloud-edge collaborative frameworks for LLMs, with a focus
on system architecture, optimization objectives, and learning-
based offloading strategies.

Index Terms—LLM, cloud-edge computing, task offloading.

I. INTRODUCTION

Large-scale language models (LLMs) have attracted signif-
icant attention due to their outstanding performance in natural
language understanding and generation [1], [2]. However,
their high computational complexity and significant memory
requirements during the training and inference stages hinder
their practical application. These limitations make it difficult
to efficiently deliver LLM services on resource-constrained
devices [3].

To overcome these limitations, cloud-edge computing has
emerged as an active research area, aiming to combine the
powerful computational capabilities of the cloud with the low-
latency and local processing capabilities of edge servers [4].
This collaborative architecture enables dynamic workload dis-
tribution and real-time service delivery.

To provide valuable perspectives for future research, this
paper explores edge-cloud collaboration strategies for LLM
services, focusing on offloading decision-making and resource
allocation considering latency, energy efficiency, and quality
of service.

II. BACKGROUND
A. Large Language Model

LLMs have revolutionized the field of artificial intelligence,
particularly in natural language processing (NLP). Most LLMs
are based on the Transformer architecture, which employs a
self-attention mechanism [5]. The self-attention operation is

mathematically expressed as
. QKT
Attention(Q, K, V') = softmax ( V, (D
Vdy
where @), K, and V are the query, key, and value matrices,
respectively, and dj, is the dimensionality of the key.
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The adaptability of LLMs makes them suitable for various
industries and use cases, but this versatility comes at a cost.
These models demand significant computational and memory
resources, especially during inference, which involves process-
ing user inputs to generate intelligent responses.

B. Cloud-Edge Computing

Cloud-edge computing is a collaborative architectural
paradigm that combines the high-capacity computational in-
frastructure of cloud servers with the low computation latency
and proximity advantages of edge servers. Cloud servers
possess extensive processing power and memory, making them
suitable for handling large-scale and compute-intensive tasks.
In contrast, edge servers are deployed closer to end-users,
allowing for faster response times and reduced transmission
delays. By offloading the LLM tasks to the cloud or edge
servers, it can reduce the computational load on local devices.
However, this approach introduces additional communication
delay.

III. RESEARCH TRENDS

The authors in [6] propose a cloud-edge collaborative frame-
work to support the efficient deployment of LLMs. The system
consists of multiple LLM users, cloud computing center, and
edge server. The objective of this study is to determine an
optimal offloading policy for large-model inference tasks,
considering limited computational resources at the endpoint
and leveraging edge or cloud infrastructures. To solve this
problem, authors adopt an active inference framework, rooted
in Bayesian inference and variational free energy minimiza-
tion. Unlike traditional reinforcement learning, the system uses
a Partially Observable Markov Decision Process (POMDP)
model and minimizes variational free energy to decide optimal
actions for LLM deployment and resource management. The
state space consists of remaining computing resource, the
remaining bandwidth resource, and the remaining graphics
memory resource. The action consists of offloading the LLM
inference task to a selected server, along with allocating
computational resources, channel bandwidth, and graphics
memory required for task execution.

The authors in [7] propose EdgeShard, a collaborative
inference framework designed to efficiently run LLMs across
edge devices. The system model assumes a layered LLM
architecture with N layers, where each layer has an activation
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size and memory requirement. The network consists of inter-
connected devices, including edge devices and more powerful
cloud servers. EdgeShard operates in three stages: profiling,
scheduling optimization, and collaborative inference. In the
profiling stage, the system gathers layer-wise execution time,
memory usage, and bandwidth information using dynamic
model loading to accommodate memory-limited devices. The
scheduling stage generates a device-aware model partition
plan, assigning layers to edge devices based on resource
availability and system constraints. Finally, in the collaborative
inference stage, devices execute the model with preallocated
KV-cache memory to ensure efficient and accurate output.
Both sequential and pipeline parallel inference are supported.
The authors formulate the problem of minimizing LLM in-
ference latency and optimizing throughput, and solve it using
dynamic programming algorithm.

The authors in [8] introduce PerLLM, a personalized in-
ference scheduling framework designed to optimize LLM
services through edge-cloud collaboration. They formulate
multi-objective optimization task that aims to minimize the
total energy cost of LLM inference across edge-cloud infras-
tructure, including transmission, inference, and idle energy.
The problem considers latency constraint, bandwidth con-
straint, computing constraint, and assignment constraint. The
latency constraint ensures timely service completion from the
user’s perspective, whereas bandwidth and computing power
constraints reflect the limitations of available resources. As-
signment constraint guarantees only one server can be chosen
for each service. To solve the scheduling problem under
multiple constraints, the authors model it as a Combinatorial
Multi-Armed Bandit (CMAB) problem. They propose a novel
algorithm called Constraint Satisfaction Upper Confidence
Bound (CS-UCB), which selects service-to-server assignments
by maximizing expected reward while satisfying processing
time, bandwidth, and computation constraints. The state space
consists of the current computing and bandwidth resources of
each server, while the action space involves assigning each
service to a specific server.

The authors in [9] propose a cloud—edge collaborative
framework for enabling multimodal LLM (MLLM)-based Ad-
vanced Driver Assistance Systems (ADAS) in IoT-enabled ve-
hicular networks. State-of-the-art MLLM model (CogVLM?2)
is deployed at the edge, while ChatGPT-40 is deployed at
the cloud. Authors used the BDD-X dataset to fine-tune
the CogVLM2 model and leveraged few-shot learning to
enhance the performance of ChatGPT-4o0. In addition, they
formulate three models: 1) service latency model, 2) energy
consumption model, and 3) QoS (Quality of Service) model.
The service latency model considers upload latency, inference
latency, and download latency. The energy consumption model
considers inference energy consumption and communication
energy consumption. The QoS model computes the ADAS
task success rate of CogVLM2 and ChatGPT-40. Based on
these models, authors formulate the utility function to min-
imize service latency and service energy consumption while
improving QoS. To solve this function, Deep Deterministic

Policy Gradient (DDPG) based solution is proposed. The state
space of DDPG is computational load, the data size of task
and result, remaining computational resources of the local
device and edge servers, latency, required energy, and distance
between nodes. The action space consists of where to offload
the task.

IV. CONCLUSION

This paper examines the background of LLM and cloud-
edge computing. In addition, we analyze the system model, op-
timization problem, and solution proposed in recent research.
Future work could focus on designing graph neural network
(GNN)-based task offloading in the Cloud-Edge environment,
which can effectively capture the relationships between com-
munication/computing nodes.
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