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Abstract—Deep learning models have been developed for
automated plant disease classification. However, these models
often suffer from limited data diversity, especially when training
data does not reflect real environmental conditions. To address
this issue, generative models have been proposed for data
augmentation. Despite their potential, generative models face
challenges such as mode collapse, which prevents them from
guaranteeing sufficient diversity in the generated data. As a
result, data augmentation using generative adversarial
networks (GANs) can sometimes degrade algorithm
performance. Recently, Leaf-GAN was proposed to generate
diseased leaf images from healthy ones, to augment datasets and
improve the performance of deep learning models. While prior
work claimed performance gains, this study investigates the
effect of Leaf-GAN-generated synthetic images on a real-world
tomato leaf disease dataset. Our results show that when 10%
synthetic data is added, the accuracy of all tested models
decreases. Increasing the proportion of synthetic data to 25%
leads to a continued decline in performance. These findings
suggest that Leaf-GAN-generated data may introduce
inconsistencies that hinder model generalization in the tomato
disease classification task.
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Plant disease detection plays a critical role in ensuring crop
health and productivity, especially in large-scale agricultural
systems where timely intervention can prevent severe yield
losses. In recent years, deep learning [1] has emerged as a
powerful tool in plant disease detection due to its ability to
automatically learn hierarchical and discriminative features
from large image datasets without the need for handcrafted
feature engineering. Among deep learning approaches,
convolutional neural networks (CNNs) and, more recently,
transformer-based models have demonstrated impressive
performance on benchmark datasets, enabling reliable
detection of disease symptoms from leaf images [1]. These
advancements hold significant promise for precision
agriculture, as they can drastically reduce diagnostic time,
enable large-scale automated monitoring, and facilitate early
intervention—a critical factor in managing highly infectious
crop diseases such as those affecting tomatoes [2].

INTRODUCTION

Despite these advances, real-world deployment of plant
disease classification models remains challenging. High
performance on curated benchmark datasets does not always
translate to real-world agricultural settings. One of the primary
obstacles is the lack of large, diverse, and representative
datasets. Collecting diseased leaf samples that capture the full
range of environmental conditions, disease stages, and
symptom variations is both labor-intensive and time-
consuming. Moreover, certain diseases occur only under
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specific weather or seasonal conditions, making it difficult to
collect sufficient training samples for all classes. This process
often results in class imbalance, where some diseases are over-
represented while others are severely under-represented. Such
an imbalance and limited diversity can cause deep learning
models to overfit to the training data, leading to poor
generalization when deployed in new environments. Both the
quantity and diversity of the data, encompassing various
lighting conditions, leaf orientations, background clutter, and
symptom expressions, are critical determinants of model
performance.

To mitigate these challenges, researchers have explored
various data augmentation techniques. Traditional
augmentation strategies, such as image rotation, flipping,
scaling, color jittering, and cropping, help increase dataset
variability by simulating different viewpoints and lighting
conditions. However, these methods only alter existing
images and cannot introduce entirely new disease appearances.
To address this limitation, more advanced generative
approaches, particularly Generative Adversarial Networks
(GANSs) [3], have been proposed. GAN-based methods can
synthesize novel, realistic-looking diseased leaf images,
potentially expanding the diversity of training data beyond
what is available from real-world collections.

Among these approaches, Leaf-GAN [4] stands out as a
model specifically designed for plant disease image
generation. Leaf-GAN employs an attention-guided
mechanism to transform healthy leaf images into diseased
ones while preserving the leaf’s natural texture, venation
patterns, and realistic disease spread characteristics. The
intention is to aid in cases where disease samples are limited,
producing synthetic data that captures fine-grained details of
lesions and discolorations. While promising, GAN-based
methods, including Leaf-GAN, are susceptible to well-known
challenges, most notably mode collapse [5].

Mode collapse occurs when the GAN’s generator
produces a limited range of outputs, failing to capture the full
diversity of the target data distribution. Instead of generating
a wide variety of disease symptoms, lesion shapes, and
severities, the generator may repeatedly produce highly
similar outputs. In plant disease classification, this lack of
variability undermines the core purpose of data augmentation,
as it results in synthetic datasets that overrepresent certain
visual features while underrepresenting others. Consequently,
models trained on such data risk becoming biased toward a
narrow subset of disease appearances, reducing their ability to
generalize across real-world scenarios that contain greater
variability.

To systematically evaluate the impact of GAN-generated
data—and Leaf-GAN in particular—on tomato leaf disease
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classification, this study employs five state-of-the-art deep
learning architectures: ConvNeXt [6], EfficientNetB3 [7],
MobileViT [8], Vision Transformer (ViT) [9], and the
Compact Convolutional Transformer (CCT) [10]. These
models were chosen to represent diverse architectural
paradigms, ranging from pure convolutional designs to hybrid
CNN-transformer models and lightweight vision transformers.
Each model was trained and evaluated on three versions of the
dataset:

1. Original Dataset (Baseline) — real tomato leaf images
only.

2. Al Augmentation — original dataset plus 10% Leaf-
GAN-generated synthetic images.

3. A2 Augmentation — original dataset plus 25% Leaf-

GAN-generated synthetic images.

This experimental design allows us to measure not only
whether GAN-based augmentation improves performance but
also how different proportions of synthetic data affect
accuracy and generalization.

In our experiments, applying Leaf-GAN [4] to tomato leaf
disease classification revealed a notable limitation. While
Leaf-GAN had previously reported promising results on
cucumber leaf datasets, its performance did not generalize to
tomatoes. The synthetic tomato leaf images frequently
displayed repetitive lesion patterns and discolorations,
suggesting a lack of diversity indicative of mode collapse [5].
This visual repetition led to augmented datasets that over-
represented certain disease traits while omitting others,
ultimately biasing model training.

The results were unexpected and counterintuitive: even
when only 10% of the training data was replaced with Leaf-
GAN-generated images, accuracy decreased across all four
deep learning models. Increasing the synthetic data proportion
to 25% further amplified the decline in performance. These
findings challenge the common assumption that synthetic
augmentation inherently benefits model training, and they
underscore the necessity for crop-specific validation of
generative augmentation methods [11].

Ultimately, our results suggest that the quality and
diversity of synthetic data are as important—if not more
important—than the quantity of generated samples. In the case
of Leaf-GAN for tomato disease classification, the generated
data introduced inconsistencies that reduced model robustness
and generalization, highlighting the risks of uncritically
adopting generative augmentation in agricultural Al pipelines.

II. RELATED WORK

Plant disease classification has been extensively
investigated across a wide range of crop types [1], [2], [11],
leveraging both laboratory-acquired datasets and real-world
field imagery [12], [13]. Early research predominantly relied
on controlled laboratory images characterized by uniform
illumination, uncluttered backgrounds, and high-resolution
captures [14]. Such conditions minimized environmental
noise, enabling deep learning models—particularly
convolutional and transformer-based architectures—to detect
disease-specific symptom patterns with high precision and
minimal confounding factors. While these laboratory datasets
often yielded remarkably high classification accuracies [1],
[15], subsequent studies have underscored the importance of
assessing model performance under realistic field conditions
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[2], [13], where variability in lighting, occlusion, background
complexity, leaf orientation, and physical damage is
inevitable [11]. Models trained exclusively on lab-acquired
imagery typically exhibit substantial performance degradation
when deployed directly in the field [3], [12], highlighting the
domain shift between controlled and in situ environments.

A critical bottleneck in advancing robust and generalizable
plant disease detection systems is the limited availability of
large-scale, high-quality field datasets [1], [2]. This scarcity
has motivated the adoption of Generative Adversarial
Network (GAN)-based augmentation techniques, which have
demonstrated success in various agricultural applications,
such as synthetic data generation for cotton disease detection
[12], groundnut leaf stress recognition [11], and tomato plant
disease classification [2], [13]. Several studies [1], [16] stress
that domain alignment between synthetic and real-world data
is crucial for improving model performance in deep learning—
based plant disease detection. Despite promising results, the
literature consistently emphasizes the necessity for crop-
specific validation before integrating GAN-generated imagery
into operational pipelines [5], [17], given differences in leaf
morphology, disease manifestation, and environmental
backgrounds.

In this context, the present study employs Leaf-GAN [4]
to synthetically expand tomato leaf disease datasets using
realistic field imagery. Leaf-GAN generates diverse,
biologically plausible diseased leaf images embedded within
natural scene backgrounds [3], [12], aiming to reduce the
domain gap between laboratory-controlled and real-world
scenarios. Designed explicitly for plant disease detection,
Leaf-GAN builds upon CycleGAN [18] by introducing two
key innovations: (1) Attention-guided translation for focusing
disease synthesis exclusively on relevant leaf regions, and (2)
a Label-Free Leaf Segmentation (LFLSeg) [13] to isolate
leaves without manual annotations, preserving the
authenticity of field backgrounds [3], [12]. These
enhancements enable Leaf-GAN to produce highly realistic
and contextually coherent diseased leaf images,
outperforming conventional augmentation techniques, such as
geometric transformations and color perturbations [14], [15],
particularly in low-data and class-imbalanced settings [12].

Leaf-GAN’s initial application to cucumber leaf disease
classification [4] achieved substantial performance gains [1].
This success was partly attributed to the relatively uniform
leaf shape, texture, and lesion manifestation in cucumber
datasets [3], [13], which simplified the disease—healthy leaf
transformation process. The generated synthetic data
improved model generalization on unseen samples,
positioning Leaf-GAN as a promising augmentation strategy
for addressing dataset scarcity, inter-class imbalance, and
limited environmental diversity in agricultural computer
vision [11].

However, its applicability to crops with greater
morphological and pathological variability, such as tomatoes,
remains underexplored. Tomato leaf disease classification [2],
[11], [19] presents additional challenges, including irregular
leaf margins, heterogeneous venation patterns, visually
complex field backgrounds, and overlapping lesions. These
complexities raise an important question: Can Leaf~-GAN
maintain diagnostic relevance and morphological fidelity
when synthesizing disease symptoms across diverse leaf types
and complex environments?



Leaf Mold Spider Mite

Late Blight

Powdery Mildew

Septorial Leaf Spot Yellow Leaf Curl Virus Mosaic Virus

Figure 1: Healthy and diseased tomato images.

A persistent challenge in GAN-based image synthesis is
mode collapse [5], [17], [20], [21], wherein the generator
produces limited and repetitive outputs that fail to capture the
diversity of the target distribution. In the context of plant
disease  datasets, mode collapse may lead to
overrepresentation of specific lesion shapes or colorations,
biasing downstream classifiers and reducing their
generalization capacity. While prior research has proposed
strategies to mitigate mode collapse, such as architectural
modifications, domain-specific loss functions, and
progressive training stabilization [3], [4], [12], there has been
no systematic evaluation of this phenomenon within Leaf-
GAN for tomato disease detection.

To address this gap, the present study applies Leaf-GAN
to a tomato leaf disease dataset and evaluates its augmentation
efficacy across five state-of-the-art image classification
architectures: ConvNeXt [6], EfficientNetB3 [7], MobileViT
[8], Vision Transformer (ViT) [9], and Compact
Convolutional Transformer (CCT) [10].

This evaluation provides a comprehensive analysis of
Leaf-GAN’s capacity to generate diverse, diagnostically
relevant synthetic data for tomato leaf disease detection, its
potential to reduce domain shift, and its resilience against
mode collapse in high-variability agricultural domains.

III. THE PROPOSED EVALUATION FRAMEWORK

This section outlines the overall methodology employed to
evaluate the impact of Leaf~-GAN—generated synthetic data on
tomato leaf disease classification. The proposed workflow
consists of four main components:

(A) Synthetic data generation using Leaf-GAN,
(B) Data preparation,

(C) Model training, and

(D) Performance evaluation.

A. Synthetic Images Generation Using Leaf-GAN

As described in the preceding section, Leaf-GAN [4] is an
attention-guided image-to-image translation framework
specifically designed for synthesizing plant disease images. It
generates diseased leaf images from healthy ones while
preserving background realism through its integrated Label-
Free Leaf Segmentation (LFLSeg) module.
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In this study, the Leaf-GAN generator was trained using a
subset of healthy tomato leaf images. The training was
performed for 40 epochs with the Adam optimizer, employing
a fixed learning rate of 0.001 and instance normalization in
both the generator and discriminator networks. Before training
the GAN, input images were augmented via random
horizontal flips and small-angle rotations to increase
variability in the generator’s input space and improve
robustness.

Once trained, the generator was applied to selected healthy
leaf images to produce synthetic diseased samples. The
proportion of synthetic images integrated into the training set
was systematically varied to create three dataset
configurations:

A0 — Original dataset (no synthetic augmentation)
Al — Original dataset + 10% synthetic Leaf-GAN images
A2 — Original dataset + 25% synthetic Leaf-GAN images

The synthetic images were only added to the training set,
while the validation and test sets contained exclusively real
images. This design prevents synthetic bias in evaluation and
reflects a real-world deployment scenario, where
augmentation is applied solely during model training.

B. Data Preparation

The tomato leaf disease dataset used in this study was
sourced from a publicly available repository, containing high-
resolution field images that capture both healthy leaves and
those affected by common tomato diseases. As shown in
Figure 1, the dataset comprises 11 classes: Bacterial Spot,
Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot,
Target Spot, Yellow Leaf Curl Virus, Spider Mites, Mosaic
Virus, Powdery Mildew, and Healthy.

The images exhibit substantial variability in lighting
conditions, leaf orientation, occlusion, and background clutter,
closely reflecting real-world agricultural environments. Class
distributions range from 1,000 to 2,100 images per class,
ensuring a balanced yet diverse dataset suitable for evaluating
both baseline performance and the effect of synthetic
augmentation on model generalization.



All images were resized to 224x224 pixels and normalized
using standard preprocessing techniques. The dataset was split
into training, validation, and test subsets with a 70:20:10 ratio.
The same test set was used across all experiments to ensure
consistency in comparative analysis.

C. Deep Learning Models

To assess the effect of synthetic augmentation across
different architectural paradigms, five state-of-the-art image
classification models were selected:

1. ConvNeXt [6] — A modernized CNN architecture inspired
by Vision Transformers, incorporating design elements
such as large kernel sizes and layer normalization to

balance accuracy and efficiency.

EfficientNetB3 [7] — A convolutional network that
optimally scales depth, width, and resolution, achieving
high accuracy with fewer parameters through compound
scaling.

MobileViT [8] — A lightweight hybrid architecture that
fuses convolutional feature extraction with transformer
blocks, optimized for mobile and edge deployment.

. Vision Transformer (ViT) [9] — A pure transformer-
based model that processes images as sequences of non-
overlapping patches (tokens), enabling global context
modeling without convolution layers.

Compact Convolutional Transformer (CCT) [10] — A
transformer variant incorporating convolutional token
embedding, which enhances local feature modeling while
retaining global attention capabilities.

These architectures span purely convolutional, purely
transformer-based, and hybrid CNN—transformer approaches,
enabling a comprehensive evaluation of how different
inductive biases respond to GAN-based augmentation.

D. Training and Evaluation Protocol

All models were trained on an NVIDIA RTX 4090 GPU
for 40 epochs with a batch size of 32. The Adam optimizer
was used with a learning rate of 0.001, and regularization
techniques include dropout and early stopping based on
validation loss to mitigate overfitting. Each model was
trained independently under the three dataset configurations
(A0, Al, and A2), ensuring a fair comparison of baseline
performance versus synthetic augmentation.

The primary evaluation metric was overall classification
accuracy on the held-out real-image test set. To provide a
more granular performance assessment, per-class precision
and recall were also computed, enabling evaluation of each
model’s ability to accurately identify specific tomato disease
classes and distinguish between visually similar conditions.

To further investigate the effect of synthetic data
augmentation, confusion matrices were generated for every
model-dataset configuration pair. These matrices visualize
class-wise misclassification patterns, allowing for the
identification of specific disease classes that were prone to
confusion and assessing whether the inclusion of Leaf-GAN—
generated images reduced such confusion or enhanced
feature separability.

This multi-level evaluation strategy—combining global
accuracy, class-specific metrics, and confusion matrix
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analysis—ensures a comprehensive understanding of model
behavior and quantifies the contribution of synthetic
augmentation to classification robustness in real-world
deployment scenarios.

TABLE 1: MODEL ACCURACY COMPARISON

Model A0 Al A2
ViT 0.9642 | 0.9815 0.9857
CCT 0.8967 | 0.8825 0.8713
MobileViT 0.9757 | 0.9792 0.9861
EfficientNetB3 | 0.9881 | 0.9892 0.9888
ConvNeXt 0.9884 | 0.9803 0.9842
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Figure 2: Model accuracy comparison across the three
configurations: A0 (blue), Al (orange), and A2 (gray).

IV. EXPERIMENTAL RESULTS

All models were trained using the Pytorch framework with
identical hyperparameters in a GPU-enabled environment to
ensure consistency and reproducibility. Basic data
augmentation techniques, such as horizontal flipping and
random rotation, were applied uniformly across all
experiments to maintain diversity.

The classification accuracy for all five models across the
three dataset configurations (A0, Al, and A2) is presented in
Table 1 and visualized in the corresponding bar-graph shown
in Figure 2. On the original dataset (A0), ConvNeXt and
EfficientNetB3 achieved the highest accuracy (98.8%),
followed closely by MobileViT, ViT, and CCT.

When 10% synthetic Leaf-GAN data was added (Al),
most models experienced a slight decline in accuracy, with the
exception of MobileViT and ViT, which recorded marginal
improvements. Increasing the synthetic data proportion to 25%
(A2) led to further decreases for CCT and ConvNeXt, while
MobileViT and ViT maintained upward trends. These results
indicate that while transformer-based or hybrid architectures
may adapt better to moderate synthetic augmentation, heavy
reliance on Leaf-GAN-generated data can degrade
performance in CNN-dominant models.

To further investigate these trends, confusion matrix
analysis was performed, with results illustrated in Figure 3
using the ViT model, which displayed the most notable class-
level variation across A0, A1, and A2. On the original dataset
(A0), VIiT performed well in differentiating most disease
classes. However, with synthetic augmentation in A1 and A2,
confusion increased, particularly between visually similar
diseases such as Leaf Mold and Septoria leaf spot. This
suggests that the synthetic images, while visually realistic,
may have lacked sufficient intra-class variability or introduced



inconsistencies that reduced separability between similar
classes.
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Figure 3: Confusion matrices for the ViT model trained on (a) A0-original data, (b) Al- with 10% Leaf-GAN data, and (c) A2-
with 25% Leaf-GAN data. Misclassification increases with synthetic data, demonstrating model sensitivity to augmentation.

TABLE 2: MODEL PRECISION COMPARISON

Model A0 Al A2
ViT 0.9658 0.9818 0.9858
CCT 0.9016 0.8860 0.8753
MobileViT 0.9761 0.9794 0.9863
EfficientNetB3 0.9881 0.9892 0.9889
ConvNeXt 0.9885 0.9809 0.9846
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Figure 4: Precision Scores of Models Under Varying
Synthetic Data Proportions: A0 (blue), Al (orange), and A2

(gray).

The Precision values for each model are summarized in Table
2 and depicted in the bar graph in Figure 4. Similar to the
accuracy results, EfficientNetB3 and ConvNeXt displayed
consistently high precision across all datasets, though both
saw small reductions in Al and A2. MobileViT and ViT
achieved notable precision improvements as the proportion of
synthetic data increased, suggesting these models were able to
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leverage additional training variation despite potential
distributional inconsistencies. In contrast, CCT’s precision
declined steadily from AQ to A2, reflecting reduced ability to
maintain class-specific boundaries in the presence of GAN-
generated samples. These trends further highlight
architectural differences in how models handle synthetic
augmentation.

Table 3 and the corresponding recall bar graph in Figure 5
show that EfficientNetB3 and ConvNeXt retained high recall
across all dataset configurations, with only minor fluctuations.
MobileViT and ViT benefited from synthetic augmentation,
registering incremental recall gains from A0 to A2. In contrast,
CCT exhibited a continuous decline in recall, indicating that
synthetic images negatively impacted their sensitivity to
positive class detection. These results imply that while some
architectures adapt to the increased variability provided by
GAN augmentation, others, particularly those relying heavily
on localized convolutional features, may experience a drop in
detection sensitivity.

TABLE 3: MODEL RECALL COMPARISON

Model A0 Al A2
ViT 0.9642 0.9815 0.9857
CCT 0.8967 0.8825 0.8713
MobileViT 0.9757 0.9792 0.9861
EfficientNetB3 0.9881 0.9892 0.9888
ConvNeXt 0.9884 0.9803 0.9842

Although visually realistic, these synthetic images did not
contribute positively to the tomato disease classification task.
Notably, EfficientNetB3 and ConvNeXt demonstrated greater
resilience, likely attributable to their enhanced local context



learning capabilities, which may mitigate some of the
limitations introduced by GAN-generated textures.
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Figure 5: Recall Performance Across the three

configurations: A0 (blue), Al (orange), and A2 (gray).

Overall, the findings demonstrate that the addition of
synthetic data not only failed to enhance model performance
but also consistently decreased or remained the same. Even a
modest augmentation of 10% led to a measurable reduction in
accuracy, and further increasing the proportion of synthetic
data (A2) resulted in a further decline in performance. These
results contradict the expected benefit of GAN-based
augmentation and highlight the need for task-specific
validation before adopting synthetic data in practical
diagnostic systems.

V. CONCLUSION

This study evaluated the effect of Leaf-GAN-generated
synthetic images on tomato leaf disease classification using
multiple deep learning models. Experimental results revealed
that augmenting the original dataset with just 10% synthetic
data (A1) consistently reduced classification accuracy, and
using 25% synthetic data (A2) led to continued performance
degradation. Although Leaf-GAN is capable of generating
visually realistic images, the generated samples may lack
critical diagnostic features or introduce distributional
inconsistencies that negatively affect the models’ learning and
generalization capabilities. These findings emphasize the
importance of task-specific validation when applying
generative augmentation techniques, as their effectiveness can
vary significantly across domains. Cautious integration and
careful tuning are essential before adopting such methods in
real-world plant disease diagnostic systems.
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