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Abstract—Deep learning models have been developed for 
automated plant disease classification. However, these models 
often suffer from limited data diversity, especially when training 
data does not reflect real environmental conditions. To address 
this issue, generative models have been proposed for data 
augmentation. Despite their potential, generative models face 
challenges such as mode collapse, which prevents them from 
guaranteeing sufficient diversity in the generated data. As a 
result, data augmentation using generative adversarial 
networks (GANs) can sometimes degrade algorithm 
performance. Recently, Leaf-GAN was proposed to generate 
diseased leaf images from healthy ones, to augment datasets and 
improve the performance of deep learning models. While prior 
work claimed performance gains, this study investigates the 
effect of Leaf-GAN–generated synthetic images on a real-world 
tomato leaf disease dataset. Our results show that when 10% 
synthetic data is added, the accuracy of all tested models 
decreases. Increasing the proportion of synthetic data to 25% 
leads to a continued decline in performance. These findings 
suggest that Leaf-GAN–generated data may introduce 
inconsistencies that hinder model generalization in the tomato 
disease classification task. 

Keywords—Deep Learning, LeafGan, Data Augmentation, 
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I. INTRODUCTION  
Plant disease detection plays a critical role in ensuring crop 

health and productivity, especially in large-scale agricultural 
systems where timely intervention can prevent severe yield 
losses. In recent years, deep learning [1] has emerged as a 
powerful tool in plant disease detection due to its ability to 
automatically learn hierarchical and discriminative features 
from large image datasets without the need for handcrafted 
feature engineering. Among deep learning approaches, 
convolutional neural networks (CNNs) and, more recently, 
transformer-based models have demonstrated impressive 
performance on benchmark datasets, enabling reliable 
detection of disease symptoms from leaf images [1]. These 
advancements hold significant promise for precision 
agriculture, as they can drastically reduce diagnostic time, 
enable large-scale automated monitoring, and facilitate early 
intervention—a critical factor in managing highly infectious 
crop diseases such as those affecting tomatoes [2]. 

Despite these advances, real-world deployment of plant 
disease classification models remains challenging. High 
performance on curated benchmark datasets does not always 
translate to real-world agricultural settings. One of the primary 
obstacles is the lack of large, diverse, and representative 
datasets. Collecting diseased leaf samples that capture the full 
range of environmental conditions, disease stages, and 
symptom variations is both labor-intensive and time-
consuming. Moreover, certain diseases occur only under 

specific weather or seasonal conditions, making it difficult to 
collect sufficient training samples for all classes. This process 
often results in class imbalance, where some diseases are over-
represented while others are severely under-represented. Such 
an imbalance and limited diversity can cause deep learning 
models to overfit to the training data, leading to poor 
generalization when deployed in new environments. Both the 
quantity and diversity of the data, encompassing various 
lighting conditions, leaf orientations, background clutter, and 
symptom expressions, are critical determinants of model 
performance. 

To mitigate these challenges, researchers have explored 
various data augmentation techniques. Traditional 
augmentation strategies, such as image rotation, flipping, 
scaling, color jittering, and cropping, help increase dataset 
variability by simulating different viewpoints and lighting 
conditions. However, these methods only alter existing 
images and cannot introduce entirely new disease appearances. 
To address this limitation, more advanced generative 
approaches, particularly Generative Adversarial Networks 
(GANs) [3], have been proposed. GAN-based methods can 
synthesize novel, realistic-looking diseased leaf images, 
potentially expanding the diversity of training data beyond 
what is available from real-world collections. 

Among these approaches, Leaf-GAN [4] stands out as a 
model specifically designed for plant disease image 
generation. Leaf-GAN employs an attention-guided 
mechanism to transform healthy leaf images into diseased 
ones while preserving the leaf’s natural texture, venation 
patterns, and realistic disease spread characteristics. The 
intention is to aid in cases where disease samples are limited, 
producing synthetic data that captures fine-grained details of 
lesions and discolorations. While promising, GAN-based 
methods, including Leaf-GAN, are susceptible to well-known 
challenges, most notably mode collapse [5]. 

Mode collapse occurs when the GAN’s generator 
produces a limited range of outputs, failing to capture the full 
diversity of the target data distribution. Instead of generating 
a wide variety of disease symptoms, lesion shapes, and 
severities, the generator may repeatedly produce highly 
similar outputs. In plant disease classification, this lack of 
variability undermines the core purpose of data augmentation, 
as it results in synthetic datasets that overrepresent certain 
visual features while underrepresenting others. Consequently, 
models trained on such data risk becoming biased toward a 
narrow subset of disease appearances, reducing their ability to 
generalize across real-world scenarios that contain greater 
variability. 

To systematically evaluate the impact of GAN-generated 
data—and Leaf-GAN in particular—on tomato leaf disease 
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classification, this study employs five state-of-the-art deep 
learning architectures: ConvNeXt [6], EfficientNetB3 [7], 
MobileViT [8], Vision Transformer (ViT) [9], and the 
Compact Convolutional Transformer (CCT) [10]. These 
models were chosen to represent diverse architectural 
paradigms, ranging from pure convolutional designs to hybrid 
CNN-transformer models and lightweight vision transformers. 
Each model was trained and evaluated on three versions of the 
dataset: 

1. Original Dataset (Baseline) – real tomato leaf images 
only. 

2. A1 Augmentation – original dataset plus 10% Leaf-
GAN–generated synthetic images. 

3. A2 Augmentation – original dataset plus 25% Leaf-
GAN–generated synthetic images. 

This experimental design allows us to measure not only 
whether GAN-based augmentation improves performance but 
also how different proportions of synthetic data affect 
accuracy and generalization. 

In our experiments, applying Leaf-GAN [4] to tomato leaf 
disease classification revealed a notable limitation. While 
Leaf-GAN had previously reported promising results on 
cucumber leaf datasets, its performance did not generalize to 
tomatoes. The synthetic tomato leaf images frequently 
displayed repetitive lesion patterns and discolorations, 
suggesting a lack of diversity indicative of mode collapse [5]. 
This visual repetition led to augmented datasets that over-
represented certain disease traits while omitting others, 
ultimately biasing model training. 

The results were unexpected and counterintuitive: even 
when only 10% of the training data was replaced with Leaf-
GAN–generated images, accuracy decreased across all four 
deep learning models. Increasing the synthetic data proportion 
to 25% further amplified the decline in performance. These 
findings challenge the common assumption that synthetic 
augmentation inherently benefits model training, and they 
underscore the necessity for crop-specific validation of 
generative augmentation methods [11]. 

Ultimately, our results suggest that the quality and 
diversity of synthetic data are as important—if not more 
important—than the quantity of generated samples. In the case 
of Leaf-GAN for tomato disease classification, the generated 
data introduced inconsistencies that reduced model robustness 
and generalization, highlighting the risks of uncritically 
adopting generative augmentation in agricultural AI pipelines.   

II. RELATED WORK 
Plant disease classification has been extensively 

investigated across a wide range of crop types [1], [2], [11], 
leveraging both laboratory-acquired datasets and real-world 
field imagery [12], [13]. Early research predominantly relied 
on controlled laboratory images characterized by uniform 
illumination, uncluttered backgrounds, and high-resolution 
captures [14]. Such conditions minimized environmental 
noise, enabling deep learning models—particularly 
convolutional and transformer-based architectures—to detect 
disease-specific symptom patterns with high precision and 
minimal confounding factors. While these laboratory datasets 
often yielded remarkably high classification accuracies [1], 
[15], subsequent studies have underscored the importance of 
assessing model performance under realistic field conditions 

[2], [13], where variability in lighting, occlusion, background 
complexity, leaf orientation, and physical damage is 
inevitable [11]. Models trained exclusively on lab-acquired 
imagery typically exhibit substantial performance degradation 
when deployed directly in the field [3], [12], highlighting the 
domain shift between controlled and in situ environments. 

A critical bottleneck in advancing robust and generalizable 
plant disease detection systems is the limited availability of 
large-scale, high-quality field datasets [1], [2]. This scarcity 
has motivated the adoption of Generative Adversarial 
Network (GAN)–based augmentation techniques, which have 
demonstrated success in various agricultural applications, 
such as synthetic data generation for cotton disease detection 
[12], groundnut leaf stress recognition [11], and tomato plant 
disease classification [2], [13]. Several studies [1], [16] stress 
that domain alignment between synthetic and real-world data 
is crucial for improving model performance in deep learning–
based plant disease detection. Despite promising results, the 
literature consistently emphasizes the necessity for crop-
specific validation before integrating GAN-generated imagery 
into operational pipelines [5], [17], given differences in leaf 
morphology, disease manifestation, and environmental 
backgrounds. 

In this context, the present study employs Leaf-GAN [4] 
to synthetically expand tomato leaf disease datasets using 
realistic field imagery. Leaf-GAN generates diverse, 
biologically plausible diseased leaf images embedded within 
natural scene backgrounds [3], [12], aiming to reduce the 
domain gap between laboratory-controlled and real-world 
scenarios. Designed explicitly for plant disease detection, 
Leaf-GAN builds upon CycleGAN [18] by introducing two 
key innovations: (1) Attention-guided translation for focusing 
disease synthesis exclusively on relevant leaf regions, and (2) 
a Label-Free Leaf Segmentation (LFLSeg) [13] to isolate 
leaves without manual annotations, preserving the 
authenticity of field backgrounds [3], [12]. These 
enhancements enable Leaf-GAN to produce highly realistic 
and contextually coherent diseased leaf images, 
outperforming conventional augmentation techniques, such as 
geometric transformations and color perturbations [14], [15], 
particularly in low-data and class-imbalanced settings [12]. 

Leaf-GAN’s initial application to cucumber leaf disease 
classification [4] achieved substantial performance gains [1]. 
This success was partly attributed to the relatively uniform 
leaf shape, texture, and lesion manifestation in cucumber 
datasets [3], [13], which simplified the disease–healthy leaf 
transformation process. The generated synthetic data 
improved model generalization on unseen samples, 
positioning Leaf-GAN as a promising augmentation strategy 
for addressing dataset scarcity, inter-class imbalance, and 
limited environmental diversity in agricultural computer 
vision [11]. 

However, its applicability to crops with greater 
morphological and pathological variability, such as tomatoes, 
remains underexplored. Tomato leaf disease classification [2], 
[11], [19] presents additional challenges, including irregular 
leaf margins, heterogeneous venation patterns, visually 
complex field backgrounds, and overlapping lesions. These 
complexities raise an important question: Can Leaf-GAN 
maintain diagnostic relevance and morphological fidelity 
when synthesizing disease symptoms across diverse leaf types 
and complex environments? 

548



 3 

  

 
Figure 1: Healthy and diseased tomato images.  

A persistent challenge in GAN-based image synthesis is 
mode collapse [5], [17], [20], [21], wherein the generator 
produces limited and repetitive outputs that fail to capture the 
diversity of the target distribution. In the context of plant 
disease datasets, mode collapse may lead to 
overrepresentation of specific lesion shapes or colorations, 
biasing downstream classifiers and reducing their 
generalization capacity. While prior research has proposed 
strategies to mitigate mode collapse, such as architectural 
modifications, domain-specific loss functions, and 
progressive training stabilization [3], [4], [12], there has been 
no systematic evaluation of this phenomenon within Leaf-
GAN for tomato disease detection. 

To address this gap, the present study applies Leaf-GAN 
to a tomato leaf disease dataset and evaluates its augmentation 
efficacy across five state-of-the-art image classification 
architectures: ConvNeXt [6], EfficientNetB3 [7], MobileViT 
[8], Vision Transformer (ViT) [9], and Compact 
Convolutional Transformer (CCT) [10]. 

This evaluation provides a comprehensive analysis of 
Leaf-GAN’s capacity to generate diverse, diagnostically 
relevant synthetic data for tomato leaf disease detection, its 
potential to reduce domain shift, and its resilience against 
mode collapse in high-variability agricultural domains. 

III. THE PROPOSED EVALUATION FRAMEWORK  
This section outlines the overall methodology employed to 

evaluate the impact of Leaf-GAN–generated synthetic data on 
tomato leaf disease classification. The proposed workflow 
consists of four main components: 
(A) Synthetic data generation using Leaf-GAN, 
(B) Data preparation, 
(C) Model training, and 
(D) Performance evaluation. 

A. Synthetic Images Generation Using Leaf-GAN 
As described in the preceding section, Leaf-GAN [4] is an 

attention-guided image-to-image translation framework 
specifically designed for synthesizing plant disease images. It 
generates diseased leaf images from healthy ones while 
preserving background realism through its integrated Label-
Free Leaf Segmentation (LFLSeg) module. 

In this study, the Leaf-GAN generator was trained using a 
subset of healthy tomato leaf images. The training was 
performed for 40 epochs with the Adam optimizer, employing 
a fixed learning rate of 0.001 and instance normalization in 
both the generator and discriminator networks. Before training 
the GAN, input images were augmented via random 
horizontal flips and small-angle rotations to increase 
variability in the generator’s input space and improve 
robustness. 

Once trained, the generator was applied to selected healthy 
leaf images to produce synthetic diseased samples. The 
proportion of synthetic images integrated into the training set 
was systematically varied to create three dataset 
configurations: 

   A0 – Original dataset (no synthetic augmentation) 

   A1 – Original dataset + 10% synthetic Leaf-GAN images 

   A2 – Original dataset + 25% synthetic Leaf-GAN images 

The synthetic images were only added to the training set, 
while the validation and test sets contained exclusively real 
images. This design prevents synthetic bias in evaluation and 
reflects a real-world deployment scenario, where 
augmentation is applied solely during model training. 

B. Data Preparation 
     The tomato leaf disease dataset used in this study was 
sourced from a publicly available repository, containing high-
resolution field images that capture both healthy leaves and 
those affected by common tomato diseases. As shown in 
Figure 1, the dataset comprises 11 classes: Bacterial Spot, 
Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot, 
Target Spot, Yellow Leaf Curl Virus, Spider Mites, Mosaic 
Virus, Powdery Mildew, and Healthy. 

The images exhibit substantial variability in lighting 
conditions, leaf orientation, occlusion, and background clutter, 
closely reflecting real-world agricultural environments. Class 
distributions range from 1,000 to 2,100 images per class, 
ensuring a balanced yet diverse dataset suitable for evaluating 
both baseline performance and the effect of synthetic 
augmentation on model generalization. 
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All images were resized to 224×224 pixels and normalized 
using standard preprocessing techniques. The dataset was split 
into training, validation, and test subsets with a 70:20:10 ratio. 
The same test set was used across all experiments to ensure 
consistency in comparative analysis.  

C. Deep Learning Models 
To assess the effect of synthetic augmentation across 

different architectural paradigms, five state-of-the-art image 
classification models were selected: 

1. ConvNeXt [6] – A modernized CNN architecture inspired 
by Vision Transformers, incorporating design elements 
such as large kernel sizes and layer normalization to 
balance accuracy and efficiency.  

2. EfficientNetB3 [7] – A convolutional network that 
optimally scales depth, width, and resolution, achieving 
high accuracy with fewer parameters through compound 
scaling. 

3. MobileViT [8]  – A lightweight hybrid architecture that 
fuses convolutional feature extraction with transformer 
blocks, optimized for mobile and edge deployment. 

4. Vision Transformer (ViT) [9] – A pure transformer-
based model that processes images as sequences of non-
overlapping patches (tokens), enabling global context 
modeling without convolution layers. 

5. Compact Convolutional Transformer (CCT) [10]  – A 
transformer variant incorporating convolutional token 
embedding, which enhances local feature modeling while 
retaining global attention capabilities. 

These architectures span purely convolutional, purely 
transformer-based, and hybrid CNN–transformer approaches, 
enabling a comprehensive evaluation of how different 
inductive biases respond to GAN-based augmentation.   

D. Training and Evaluation Protocol 
     All models were trained on an NVIDIA RTX 4090 GPU 
for 40 epochs with a batch size of 32. The Adam optimizer 
was used with a learning rate of 0.001, and regularization 
techniques include dropout and early stopping based on 
validation loss to mitigate overfitting. Each model was 
trained independently under the three dataset configurations 
(A0, A1, and A2), ensuring a fair comparison of baseline 
performance versus synthetic augmentation. 

The primary evaluation metric was overall classification 
accuracy on the held-out real-image test set. To provide a 
more granular performance assessment, per-class precision 
and recall were also computed, enabling evaluation of each 
model’s ability to accurately identify specific tomato disease 
classes and distinguish between visually similar conditions. 

To further investigate the effect of synthetic data 
augmentation, confusion matrices were generated for every 
model–dataset configuration pair. These matrices visualize 
class-wise misclassification patterns, allowing for the 
identification of specific disease classes that were prone to 
confusion and assessing whether the inclusion of Leaf-GAN–
generated images reduced such confusion or enhanced 
feature separability. 

This multi-level evaluation strategy—combining global 
accuracy, class-specific metrics, and confusion matrix 

analysis—ensures a comprehensive understanding of model 
behavior and quantifies the contribution of synthetic 
augmentation to classification robustness in real-world 
deployment scenarios. 

TABLE 1: MODEL ACCURACY COMPARISON 
Model A0 A1 A2 
ViT 0.9642 0.9815 0.9857 
CCT 0.8967 0.8825 0.8713 
MobileViT 0.9757 0.9792 0.9861 
EfficientNetB3 0.9881 0.9892 0.9888 
ConvNeXt 0.9884 0.9803 0.9842 

  
Figure 2: Model accuracy comparison across the three 
configurations: A0 (blue), A1 (orange), and A2 (gray).  

IV. EXPERIMENTAL RESULTS 
All models were trained using the Pytorch framework with 

identical hyperparameters in a GPU-enabled environment to 
ensure consistency and reproducibility. Basic data 
augmentation techniques, such as horizontal flipping and 
random rotation, were applied uniformly across all 
experiments to maintain diversity. 

The classification accuracy for all five models across the 
three dataset configurations (A0, A1, and A2) is presented in 
Table 1 and visualized in the corresponding bar-graph shown 
in Figure 2. On the original dataset (A0), ConvNeXt and 
EfficientNetB3 achieved the highest accuracy (98.8%), 
followed closely by MobileViT, ViT, and CCT.  

When 10% synthetic Leaf-GAN data was added (A1), 
most models experienced a slight decline in accuracy, with the 
exception of MobileViT and ViT, which recorded marginal 
improvements. Increasing the synthetic data proportion to 25% 
(A2) led to further decreases for CCT and ConvNeXt, while 
MobileViT and ViT maintained upward trends. These results 
indicate that while transformer-based or hybrid architectures 
may adapt better to moderate synthetic augmentation, heavy 
reliance on Leaf-GAN-generated data can degrade 
performance in CNN-dominant models. 

To further investigate these trends, confusion matrix 
analysis was performed, with results illustrated in Figure 3 
using the ViT model, which displayed the most notable class-
level variation across A0, A1, and A2. On the original dataset 
(A0), ViT performed well in differentiating most disease 
classes. However, with synthetic augmentation in A1 and A2, 
confusion increased, particularly between visually similar 
diseases such as Leaf Mold and Septoria leaf spot. This 
suggests that the synthetic images, while visually realistic, 
may have lacked sufficient intra-class variability or introduced 
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inconsistencies that reduced separability between similar 
classes. 

Figure 3: Confusion matrices for the ViT model trained on (a) A0-original data, (b) A1- with 10% Leaf-GAN data, and (c) A2- 
with 25% Leaf-GAN data. Misclassification increases with synthetic data, demonstrating model sensitivity to augmentation.

TABLE 2: MODEL PRECISION COMPARISON 
Model A0 A1 A2 

ViT 0.9658 0.9818 0.9858 
CCT 0.9016 0.8860 0.8753 

MobileViT 0.9761 0.9794 0.9863 
EfficientNetB3 0.9881 0.9892 0.9889 

ConvNeXt 0.9885 0.9809 0.9846 
 

 
Figure 4: Precision Scores of Models Under Varying 
Synthetic Data Proportions: A0 (blue), A1 (orange), and A2 
(gray). 

The Precision values for each model are summarized in Table 
2 and depicted in the bar graph in Figure 4. Similar to the 
accuracy results, EfficientNetB3 and ConvNeXt displayed 
consistently high precision across all datasets, though both 
saw small reductions in A1 and A2. MobileViT and ViT 
achieved notable precision improvements as the proportion of 
synthetic data increased, suggesting these models were able to 

leverage additional training variation despite potential 
distributional inconsistencies. In contrast, CCT’s precision 
declined steadily from A0 to A2, reflecting reduced ability to 
maintain class-specific boundaries in the presence of GAN-
generated samples. These trends further highlight 
architectural differences in how models handle synthetic 
augmentation.  

Table 3 and the corresponding recall bar graph in Figure 5 
show that EfficientNetB3 and ConvNeXt retained high recall 
across all dataset configurations, with only minor fluctuations. 
MobileViT and ViT benefited from synthetic augmentation, 
registering incremental recall gains from A0 to A2. In contrast, 
CCT exhibited a continuous decline in recall, indicating that 
synthetic images negatively impacted their sensitivity to 
positive class detection. These results imply that while some 
architectures adapt to the increased variability provided by 
GAN augmentation, others, particularly those relying heavily 
on localized convolutional features, may experience a drop in 
detection sensitivity. 

TABLE 3: MODEL RECALL COMPARISON 
Model A0 A1 A2 

ViT 0.9642 0.9815 0.9857 
CCT 0.8967 0.8825 0.8713 
MobileViT 0.9757 0.9792 0.9861 
EfficientNetB3 0.9881 0.9892 0.9888 
ConvNeXt 0.9884 0.9803 0.9842 

 
Although visually realistic, these synthetic images did not 

contribute positively to the tomato disease classification task. 
Notably, EfficientNetB3 and ConvNeXt demonstrated greater 
resilience, likely attributable to their enhanced local context 
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learning capabilities, which may mitigate some of the 
limitations introduced by GAN-generated textures. 

 

 
Figure 5: Recall Performance Across the three 
configurations: A0 (blue), A1 (orange), and A2 (gray). 
 

Overall, the findings demonstrate that the addition of 
synthetic data not only failed to enhance model performance 
but also consistently decreased or remained the same. Even a 
modest augmentation of 10% led to a measurable reduction in 
accuracy, and further increasing the proportion of synthetic 
data (A2) resulted in a further decline in performance. These 
results contradict the expected benefit of GAN-based 
augmentation and highlight the need for task-specific 
validation before adopting synthetic data in practical 
diagnostic systems. 

V. CONCLUSION 
This study evaluated the effect of Leaf-GAN-generated 

synthetic images on tomato leaf disease classification using 
multiple deep learning models. Experimental results revealed 
that augmenting the original dataset with just 10% synthetic 
data (A1) consistently reduced classification accuracy, and 
using 25% synthetic data (A2) led to continued performance 
degradation. Although Leaf-GAN is capable of generating 
visually realistic images, the generated samples may lack 
critical diagnostic features or introduce distributional 
inconsistencies that negatively affect the models’ learning and 
generalization capabilities. These findings emphasize the 
importance of task-specific validation when applying 
generative augmentation techniques, as their effectiveness can 
vary significantly across domains. Cautious integration and 
careful tuning are essential before adopting such methods in 
real-world plant disease diagnostic systems. 
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