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Tunneling Effect of quantization-based optimization
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Abstract—In this paper, we present an analysis of the tunneling
effect in the quantization-based optimization. We prove that,
when the quantization step size is an exponential decay function
with respect to an iteration, the quantized objective function
admits a decomposition into longitudinal and transverse fields.
From the perspective of quantum mechanics, since the transverse
field gives the quantum tunneling effect, quantization-based
optimization can outperform a conventional thermodynamics-
based optimization scheme. Experimental results for a vanilla
objective function and a typical combinatorial optimization
problem, such as the traveling salesman problem, demonstrate
that the presented analysis is valid.

Index Terms—quantization, optimization, tunneling effect,
quantum mechanics, Schrodinger

I. INTRODUCTION

Although the quantization-based optimization algorithm
outperforms  conventional  combinatorial ~ optimization
algorithms[8], the underlying dynamic mechanism responsible
for its enhanced optimization performance remains unclear.
However, from the perspective of the quantized energy
level, we can anticipate that quantum mechanical analysis
for a Hamiltonian is a key attribute in quantization-based
optimization. The prominent property of the quantum
mechanical search algorithm is the tunneling effect, which
is the fundamental theory in quantum computing for
optimization, such as the quantum approximate optimization
algorithm. Accordingly, we expect that the quantization-
based optimization embeds equal dynamics to those of
the quantum mechanics-based optimization scheme. In this
paper, we demonstrate through numerical analysis that the
Hamiltonian derived from the quantization-based optimization
algorithm is equivalent to the dynamics inspired by quantum
mechanics, which are used to avoid local minima in the
search algorithm. Based on the presented analysis, we can
conclude that quantization-based optimization employs the
quantum tunneling effect as a prominent search mechanism.
Furthermore, we argue that quantization-based optimization
is an alternative implementation of a quantum computation
method for an optimization problem.

II. PRELIMINARIES

Beginning with this conjecture, we derive the Hamiltonian,
which is composed of longitudinal fields and transverse fields
in an Ising glass system[4], for a quantized objective function
extracted from the quantization-based optimization algorithm.
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According to the above-mentioned Ising model, we can write
the Hamiltonian as follows:

H(t) = Ho — Hg(t) = =Y Jijoio; =T(@)Y _of (1)
,J i

where the potential energy H, = — 21 jJijoios =
— i Ji,j07 ® 0F is an Edward-Anderson disordered Ising
model as a longitude field, and the time-dependent Hamilto-
nian Hy(t) £ —I'(t)Y, 08 = —T'(t) Y, 0f ® I is a kinetic
energy as a transverse field. Additionally, of € B(Hy) is the
Pauli-X operator acting non-trivially on the i-th qubit (i.e.,
1/2-spin particle), where Hy := (C?)®V denotes the Hilbert
space for N spins and B(# ) represents the set of bounded
linear operators on H . I'(t) € RT denotes the amplitude of
the transverse field, which decreases from a large initial value
satisfying I'(0) > H, to zero as ¢ increases, and J;; € R
denotes coupling parameter The transverse Ising model (1)
naturally leads to the following time-dependent Schrodinger
equation:

L Olw(t

in220) 1) s(oy. %
ot

From the definition of the Hamiltonian in the Schrodinger
2

equation, i.e., H = —f—mVQ + Vo, where V) is a potential en-

ergy, we can see that quantum tunneling appears in stationary
solutions(dy1) = 0), straightforwardly. Therefore, the solution
of (2) describes quantum tunneling under a time-dependent
potential barrier, which is modulated by I'(¢) in the transverse
field.

However, the optimization perspective primarily focuses on
the average energy or the eigenvalue of energy, as given by
E@t) = %, rather than on the detailed quantum
dynamics of the system. Accordingly, by replacing the spin
variables with the eigenvalues of 0% and o (i.e., 1), the
Hamiltonian becomes a scalar function over binary fields,
providing a more tractable formulation for constructing op-
timization algorithms:

H(t) = (1= A(t))Ho + A(t) Hy, 3)

where A(t) € R[0,1] is a monotone decreasing function such
that A\(¢) | 0 as ¢ T co. The Hamiltonian described by (3) is
known as the adiabatic quantum evolution, and the optimiza-
tion technique based on this formulation is called quantum
annealing(QA) or adiabatic quantum computation[3, 6]. As
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is well known, adiabatic quantum computation solves com-
binatorial optimization problems that can be formulated as
the ground state of the quadratic unconstrained binary opti-
mization(QUBO). The state vector of QUBO is in R™{0, 1},
which shows that an eigen model of an Ising model is
equivalent to the QUBO. Hence, as equivalent to the transverse
Ising model, quantum tunneling is the primary feature in the
search process to avoid local minima during adiabatic quantum
evolution. Consequently, if we formulate the quantization-
based optimization algorithm presented in Algorithm 1 as the
adiabatic quantum evolution described by Equation (3), we
conclude that time-varying quantization to an objective func-
tion on a scalar field is equivalent to quantum computational
optimization.

III. FUNDAMENTAL ANALYSIS
A. Definitions and Assumptions

Suppose that an objective function f(x) € RT, where
x € R” denotes a state vector. Consider the optimization
problem such that mingern~ f(x). According to Algorithm 1,
we establish the following definitions:

Definition 1: For f € R, we define the quantization of f
as follows:

FREANQ (4 ob)| = & (@ fen) = 20,7,

“)
where |f| € Z denotes the floor function, defined as the
greatest integer less than or equal to for all f € R, @, € Q7
is the resolution of quantization, and ¢ represents the fraction
for quantization such that 4 : Q — R[—1, 1). Thus, f¢ € Q.
In Definition 1, the quantization step size (), is a constant
parameter. To implement a search process, we redefine ), as
a time-dependent function as follows:

Definition 2: The quantization parameter (,, is a monotone-
increasing function of ¢ € R™ such that Q,(t) = ~ - b,
where v € QT denotes the fixed constant parameter, b € Z*
represents the base (typically 2), and h : RT* — ZT denotes
the power function satisfying h(t) 1 oo as t — oco.

For the analysis of the feature of the adiabatic quantum evo-
lution in quantization-based optimization, we assume that the
quantization step size depends on the time index as follows:

Assumption 1: For a given time index t € ZT, the quanti-
zation step size is defined as Q,(t) = b.

B. Equivalence of the Quantization-based Optimization and
the Adiabatic Quantum Evolution

Theorem 3.1: The quantized objective function f%(x;)
derived by the quantization-based optimization described in
Algorithm 1 is equivalent to the eigen value of the following
Hamiltonian H represented by the formulation of the adiabatic
quantum evolution:

where (t) € R[0,1] is a monotone decreasing function such
that 5(0) =1 and B(¢) } 0 as t 1 oco.

a) Proof of Theorem: We rewrite the quantization of the
objective function f using the base b for the quantization step
size () as defined in Definition 2, as follows:

F=F+ > fb*  feZt0,b)

(6)
k=1
Based on (6), we decompose the objective function as:
t—1 00
F=F4 ) fb™ 4+ fibF =0 -1, (). (D
k=1 k=t

From the simple form of @Q,(k), we define f2, as the
quantized objective function at the k-th resolution, i.e., ftQ_ 1=
fo+ 22;11 frb*. Substituting ff?_ , into (7), we express the
quantization error as the following power series:

F= 120 =" fubF =sign(f — f24) b e H,

k=t k=1
®)
where ¢, € Z[0,b) is a remaining coefficient for numerical
representation. Furthermore, although the sequence {ej}7°
and {fx}32,. the quantized value f;, are not identical, he
quantized value f, coincides for both sequences. Therefore,
by the above auxiliary equations, we rewrite ftQ_ 1 such that

=25
= f—sign(f = f2) - 07D ebh
k=1

= f=b" " Vsign(f — f¢7) D erd™
k=1
=f-0" (= f)
=+ (fo = =0TV S+ (107U S

Therefore, we obtain
= Q- ©)

Since b= < 1, we designate (1 — b~%)f as the eigenvalue
of (1 — A(t))Ho and b~'f, as A(t)Hy such that f, =
(1| Ho 1)/ (]1)). Finally, we set f& as the eigenvalue of the
Hamiltonian H (t) for the Schrodinger equation. (Q.E.D.)

C. Time Independent Analysis of Schrodinger Equation for
Tunneling Effect

To focus on the essential aspects, let I' be an eigen-space of
the Hamiltonian H (x4, t), which is homeomorphic to R, at a
fixed time ¢. Thus, the domain of the wave function 1) (x;,t)
is restricted to I' = R. First, considering the tunneling effect
on I', we use the following time-independent Schrodinger
equation:

n?_, Q
(—2V + V()) w(wt,t) = ft ’(/J(wt,t), (10)
m
where ftQ :R" xR — R denotes the eigenvalue function of H

given in Theorem 3.1, and V; € R is a potential representing
an energy barrier of width d such that I'[0,d) = R[0,d). In
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Algorithm 1: Blind Random Search (BRS) with the proposed quantization scheme[8]

Input: Objective function f(z) € R
Output: z,p, f(Zopt)

Data: z € R"

Initialization

7 ¢ 0 and h(0) + 0

Set initial candidate xg and .y < xo
Compute the initial objective function f(xg)
Set b =2 and v = b~ Llegs(f(zo)+1)] Qp v

19 & @+ )]

while Stopping condition is not satisfied do
Set 7+ 1+1
Select z, randomly and compute f(z,)

Calculate f9 « o {QP (f+ ﬁ)J if 1@ < fff,t then
Topt ¢ Tr )
R(T) < h(T) +1 Qp < 7 - b7
I e @ 5]
end

end

this setup, the potential satisfies V; > ftQ . Additionally, x €
R[0, d) denotes that x is in the barrier, whereas € (R0, d))®
describes that z is outside of the barrier. The restriction to the
eigen-space I yields the following simplified form:

d?y

2
w(z,t) = an;(VO - ftQ)w(xvt)’

where x € I denotes the state vector x; on I'.

From the perspective of classical mechanics, the mass of
the particle is so heavy compared to the quantum particle.
This provides the right-hand side of (11) is 0 and the primary
solution of % is equal to 0. It means that the particle is
impossible to penetrate the energy barrier to reach the other
side. Meanwhile, from the perspective of quantum mechanics,
the mass of the particle is sufficiently small, so we can
discover the particle on the other side of the energy bar-
rier with a transmission probability 7' € R[0, 1] defined as
T = |[Y(ajzerio,)} |/ [Viclce®o,e)2} >, Which is exponen-
tially decaying to the width d of the barrier, such that

x+d
T x -exp (—2/ Vvem((V(z) — E) da:) . (12)

(1)

Equation (12) shows a typical tunneling effect in the scalar
domain [2]. We can regard the eigen-space provided by
the gradient vector generated from a search algorithm. We
expand this fundamental concept to the general analysis of
the tunneling effect based on the adiabatic evolution.

D. Time-dependent Analysis of Schrodinger Equation for Tun-
neling Effect

In this section, we address that the primary process in
Algorithm 1, i.e., fQ < ngT, is a tunneling effect in the
adiabatic evolution.

For the analysis based on adiabatic evolution, we consider a
state vector |1 (t)) € L?(R™) corresponding to a wave function
1 : R™ x R — C. Under this notation, the energy can be
computed as the expectation value F = wl/ﬁlw . If the state
vector is normalized, i.e., ([¢)) = 1, this simplifies to E =
(1| H|1). We assume throughout this section that each distinct
state vector in v;, I € Z%, is orthonormal. Given the time-
dependent Schrodinger equation (2), suppose the Hamiltonian

corresponds to a two-level quantum model for different local

Hy jevel(8) = ( 518()?)2

where s denotes the time index for this analysis instead of
t or 7, L} denotes the energy, i.e., the eigenvalue of the
Hamiltonian H to the state |¢) at z, and A is the tunneling
matrix element defined as the square root of the transmission
probability according to Wentzel-Kramers—Brillouin (WKB)
theory [2]:

(13)

x2

A(s) = VT  exp (_}11 L V2V (@) - B(s)) dx) ,

) (14)
where F(s) denotes that the eigenvalue of Hy jevel($). Herein,
by computing the eigenvalues of the two-level Hamiltonian
Hj jevel (8), we obtain

E(s) = % (Ey + Ey) £ /(E1 — Ey)2 + A2(s)] .

15)

Based on Algorithm 1, we assume F; = ftQ(xl) and By =

F2(25) for distinct 1, x5 € RY with distance d = ||z — 1 ]|.

Furthermore, to illustrate the case when the quantized optimum

f(;th equals a quantized candidate f@, we set By = Fy = 9.

Under these assumptions, the eigenvalues reduce to
Als)

E(s) = f9+ —

The quantization property further yields

/:2 \/2m (V(x) - E(s)) de = \/2m (V(m) - E(S)) d,

a7

(16)

which implies

A(s) = exp [—;\/Zm (V(x) - E(s)) d‘| . (18)

Since all parameters in (18) are finite, the transmission prob-
ability is strictly positive, whereas in classical mechanics
it vanishes. This phenomenon corresponds to the quantum
tunneling effect in quantum adiabatic evolution. Even in the
case where f;%t equals f9, quantum tunneling provides a

feasible transition for Algorithm 1. As a consequence, the
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tunneling effect produces a non-strictly decreasing sequence
of ffﬁ,t without requiring smoothness or convexity, thereby
ensuring the global convergence of Algorithm 1.

Moreover, the energy given by the eigenvalue of the Hamil-
tonian in (16) corresponds to the quantization of the objective
function. This observation indicates that the dynamics of
quantization-based optimization can be interpreted within the
formalism of quantum mechanics.

IV. EXPERIMENTAL RESULTS

To validate the analysis presented in this paper, we evalu-
ate the optimization performance on well-known benchmark
functions, including Xin-She Yang N4[9], Salomon[5], Drop-
Wave[1], and Shaffer N2[7]. All the benchmark functions used
in our experiments are representative examples defined by the
CEC 2017 and CEC 2022 optimization test standards. Each
function has a unique global minimum and numerous local
minima, which are located between relatively high energy bar-
riers that hinder the search for better solutions. Additionally,
some benchmark functions, such as Xin-She Yang N4, exhibit
a wide energy barrier, which makes it difficult for algorithms
based on quantum tunneling dynamics to find feasible states.
We can verify this limitation of the quantum tunneling-based
search process from the results of optimization performance
comparison between tested algorithms in Table II. Herein,
the quantum annealing fails to find the global minimum
of the Xin-She Yang N4 benchmark function, whereas the
simulated annealing and the quantized-based algorithm find
it. Furthermore, although all algorithms succeed in finding the
global minimum for complicated benchmark functions such
as the Drop-Wave and the Shaffer N2, the quantization-based
algorithm exhibits the best optimization performance com-
pared to other algorithms. However, for the Salomon function,
which is composed of the plain addition of a sinusoidal and a
squared-quadratic function, so that it is relatively simple to find
the global minimum, the simulated annealing demonstrates
the best optimization performance. Consequently, even though
the presented analysis demonstrates that the quantization-
based algorithm optimizes the objective function through the
quantum tunneling effect, we should recognize that other
features of the quantization-based algorithm also contribute
to the improvement of optimization performance.

V. CONCLUSION

We present an analysis of quantization-based optimization
based on the adiabatic quantum evolution, which provides a
quantum tunneling effect. The analysis shows that the quantum
mechanical dynamics in quantization-based optimization are
equivalent to those in quantum annealing. Such an equivalence
suggests that quantization-based computation would be an
alternative approach to quantum computation-based optimiza-
tion.

However, the experimental results for optimization bench-
mark functions reveal that the quantization-based optimiza-
tion outperforms the quantum mechanics-based algorithm that
employs the quantum tunneling effect. These results indicate

that additional search dynamics exist in the quantization-based
algorithm that can enhance optimization performance.
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TABLE I

SPECIFICATION OF BENCHMARK TEST FUNCTIONS FOR PERFORMANCE TEST

Function

Equation

optimal point

Xin-She Yang N4

F@) =20+ (02,

sin® (i) — exp(= 37, #7) exp(= 20,

Salomon f(z) =1 — cos (271' 4 22) +0.1
1+cos(12\/a:2+y2>
Drop-Wave fz) = T T 0.5(e2492) 12
sin? (22 —y2)—0.5
Shaffel N2 0.5+

(140.001(x2+y2)2

sin® \/|x;])

/~d 2
DI

min f(z)

min f(z) =0, atz =0

min f(z) =0, atz =0

min f(z) =0, atxz =0

—1,atx =0

TABLE I

SIMULATION RESULTS OF STANDARD BENCHMARK TEST FUNCTION FOR NONLINEAR OPTIMIZATION

Function Criterion Simulated Annealing ~ Quantum Annealing  Quantization-Based Optimization
. Iteration 6420 17+* 3144
Xin-She Yang N4 Improvement ratio 54.57% 35.22% 54.57%
Salomon Iteration 1312 7092 1727
Improvement ratio 99.99% 99.99% 100.0%
Drop-Wav Iteration 907 3311 254
op-Wave Improvement ratio 100.0% 100.0% 100.0%
Iteration 7609 9657 2073
Shaffer N2 Improvement ratio 100.0% 100.0% 100.0%

Result Optimal Point=-0.003885 min f(x)=1.003903, @t=200

4.0 41 —— Original Objective Function o

=== Quantization
3.5 1
3.0 1

Eos5 A
=

2.0 A

f(@)

Input z € R

(a) Search process with respect to Xin She Yang N4 function

Result Optimal Point=-0.008856 min f(x)=0.002433, @t=200

f(z)

254 — Original Objective Function
—=- Quantization
2.0
t=
1.5 1
=
=
1.0
0.5 A t=2
t=1/ t=1
D =86 1=y 20
0.0 ° o =0 =tz o
iy —4 -2 0 2 4 6
Input z € R

(c) Search process with respect to Salomon function

Result Optimal Point=0.013676 min f(x)=0.006764, @t=200

1.0 4 —— Original Objective Function =9
— == Quantization
vy VU ¢
0.8 V
0.6 2 olt
)
0.4 o 2
] @ =23
0.2 ) ks
& 9155102
0.0 A o t=0 > =16§
-6 —4 -2 0 2 4 6
Inputz € R

(b) Search process with respect to Drop wave function

Result Optimal Point=0.136995 min f(x)=0.000006, @t=200

1.0 1 —— Original Objective Function

—~—= Quantization &t
0.8 1

2
0.6 ) ’#
¢
0.4
0.2
o t=7 t=4 |

0.0 ° o't=0 e02'e o

-6 —4 -2 0 2 4 6

Inputz € R

(d) Search process with respect to Shaffel N2 function

Fig. 1. Visualization of the quantization-based search process on 1D benchmark functions
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