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Abstract—This paper presents a practical and lightweight
system designed to support robust autonomous driving in adverse
weather, especially dense fog. Instead of relying on expensive
LiDAR or fragile camera-only setups, our approach combines
YOLOvS-based object detection with Vehicle-to-Vehicle (V2V)
communication. A key feature of the system is a scene matching
method that uses ROI Align to compare feature maps between
vehicles and verify visual consistency. This enables a two-stage
distance estimation process—starting with an estimate based
on V2V velocity and timing data, then refining it using the
relative sizes of matched objects. We tested the system in the
CARLA simulator under varying fog levels, showing stable
performance with over 90% accuracy and real-time processing
speeds under 0.3 seconds. The system also includes a fail-safe
mechanism that ensures safety in extreme conditions. Our results
show that combining camera input with V2V communication
can provide reliable cooperative driving even when visibility is
severely limited.

Index Terms—Autonomous Driving, Adverse Weather Percep-
tion, V2V Communication, Scene Matching, Distance Estimation.

I. INTRODUCTION

Autonomous driving technology has the potential to signifi-
cantly improve road safety and traffic efficiency. To operate
reliably in the real world, autonomous vehicles must be
capable of perceiving and responding to their surroundings
in real time—even under challenging conditions such as fog,
heavy rain, or snow. However, verifying such systems in
real environments is often expensive, time-consuming, and
risky. To address this, simulation platforms like CARLA
have become essential tools for safely testing diverse driving
scenarios, and are used extensively in this study.

Sensor reliability is a major concern in adverse weather.
LiDAR and radar, while widely used, suffer from reduced
performance in fog or rain due to signal scattering and
attenuation [4], [6]. LiDAR, in particular, is sensitive to fog,
and although radar offers better robustness, its low resolution
often limits object recognition and distance accuracy [2]. On
the other hand, cameras provide rich visual information at a
lower cost but are easily affected by poor visibility, which can
critically degrade perception and control performance. While
many studies have explored solutions such as sensor fusion,
advanced image enhancement, or deep learning improvements
[5], these approaches often add complexity, cost, or fail to fully
address the fundamental limitations of the individual sensors
in extreme conditions.

In this work, we propose a camera-based system enhanced
by Vehicle-to-Vehicle (V2V) communication to support safe
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and stable driving in foggy conditions. Several studies have
employed V2V communications to support task-specific [10]
or delay-sensitive services [11]. While YOLO-based object
detectors have shown promise in adverse weather, their effec-
tiveness drops significantly when visual information is severely
limited [3], [12]. Our approach addresses this gap by combin-
ing camera perception with cooperative V2V communication,
offering a cost-effective alternative to expensive sensor suites
like LiDAR and radar.
The main contributions of this paper are as follows:

o Fog-specific dataset generation and training: We col-
lected a custom dataset under dense fog in the CARLA
simulator and trained a YOLOvVS model optimized for
these conditions.

o Scene matching and distance estimation: We introduce
a novel scene matching method using intermediate fea-
tures from YOLOVS, enabling a two-stage distance esti-
mation process based on V2V data and visual similarity.

o Experimental validation in CARLA: We demonstrate
the effectiveness of our system in simulated foggy en-
vironments, showing accurate distance estimation and
stable vehicle control performance.

II. SYSTEM MODEL IN CARLA SIMULATOR

To evaluate the proposed system, we use the open-source
CARLA simulator (v0.9.15) [8], which offers a realistic driv-
ing environment and fine-grained control over vehicle behav-
ior, sensors, and weather. This section describes the simulation
setup and provides an overview of the system architecture.

A. CARLA Simulator Environment Configuration

All simulations were conducted on CARLA’s Town04 map,
chosen for its long, straight highway sections well suited for
testing vehicle following and lane-change scenarios. As shown
in Fig. 1, the test section supports a range of lane config-
urations for evaluating various driving maneuvers. The ego
vehicle (EV) is equipped with a forward-facing RGB camera
(800x600 resolution, 90-degree FOV) capturing images at 20
FPS. Lead vehicles (LVs) are placed ahead of the EV and
follow predefined paths using CARLA’s BasicAgent module.
All vehicles use the Tesla Model 3 blueprint.

To emulate real-world road conditions, the following set-
tings were applied:

o Lane Configuration: The selected highway segments
contain 1 to 4 lanes per direction, allowing tests under
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Straight Driving

Town 04

Fig. 1: The Town04 highway environment in the CARLA
simulator, highlighting the selected long highway sections for
driving scenarios.

diverse traffic scenarios including lane keeping and lane
changes.

o Environmental objects: Standard CARLA roadside el-
ements such as speed limit signs, warning signs, street-
lamps, trees, and billboards were deployed. These were
also used to build the object detection dataset through
manual labeling on the Roboflow platform.

o Vehicle speed and arrangement: In the main scenario,
the LV drives at 50 km/h in the second lane, while the EV
follows at 57 km/h in the same lane. An additional lead
vehicle (LV2) is placed in either the adjacent first or third
lane, traveling at 55 km/h. This setup allows the system
to be tested in multi-vehicle and lane-change situations.

All vehicles are virtually equipped with GNSS and IMU
sensors, providing ground truth data for position and veloc-
ity. These values are used to simulate V2V communication
between the vehicles.

B. Driving Scenarios in Adverse Weather

To evaluate system performance under poor visibility, we
configured various fog conditions using CARLA’s built-in
weather engine. The fog density parameter was gradually
increased from O (clear) to 100 (dense), with primary experi-
ments conducted in the range of 20 to 100 to simulate realistic
adverse scenarios.

In our main scenario, the ego vehicle (EV) follows a
lead vehicle (LV) in the same lane while maintaining a safe
distance. A second lead vehicle (LV2) travels in an adjacent
lane and plays a supporting role by sharing lane occupancy
information. This setup is intended to test whether the EV
can maintain safe driving even when the LV becomes visually
indistinct due to fog. To support this, V2V communication
allows the LV to transmit its velocity and front camera image
to the EV, while LV2 shares information about its current lane
and whether it is occupied. This shared data enables the EV
to estimate inter-vehicle distance and make informed decisions
even when its own visual perception is impaired. Fig. 2 shows
the complete driving scenario, including the relative positions
of all vehicles, lane layout, and the direction of data exchanged
via V2V links.
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Fig. 2: Driving Scenarios in Adverse Weather.

C. System Architecture

As shown in Fig. 3, the system is composed of four
modules: perception, communication, decision-making, and
control. The perception module performs object detection,
feature extraction, scene matching, and distance estimation
using camera input and V2V images. The communication
module exchanges real-time data such as velocity, camera
images, and lane status with nearby vehicles. Based on this
information, the decision-making module selects appropriate
actions, such as maintaining distance, braking, or changing
lanes, which are executed by the control module via low-
level commands. To enhance safety, a Fail-Safe mechanism
is triggered under severe perception degradation, prompting
the vehicle to slow down or stop as needed.

III. SCENE MATCHING AND ADAPTIVE CONTROL
METHODOLOGY

This section outlines the core components of our system:
a perception and a control module. We describe how each
component contributes to achieving robust performance under
foggy conditions, using only camera input and V2V commu-
nication.

A. Object Detection and Custom Dataset Generation

To enable reliable object detection under adverse weather,
we trained a YOLOvV5s model on a custom dataset collected in
the CARLA simulator. We selected YOLOVSs for its balance
between accuracy and speed, leveraging its CSPDarknet back-
bone and PANet/FPN architecture for multi-scale detection [9].
The dataset was built by capturing images from the EV’s front-
facing RGB camera while driving at approximately 60 km/h
on the Town04 highway map. Fog conditions were applied to
simulate realistic low-visibility environments.

Objects were categorized into two types: base classes (e.g.,
tree, streetlamp) representing general road features, and event
classes (e.g., warning signs, advertisements, accidents) con-
veying critical road information. These were randomly placed
at regular intervals (about 20 meters) along the road to ensure
spatial diversity. A total of 663 images were collected and
labeled using the Roboflow platform, with a 70:30 train-
validation split. This dataset enabled the model to detect both
static environmental features and dynamic events in foggy
conditions, forming the foundation for downstream scene
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Fig. 4: Objects placed and utilized in the CARLA simulator
for dataset generation.

matching and distance estimation. Examples of labeled objects
used in training are shown in Fig. 4.

B. V2V Communication Module

To support cooperative perception, we implemented a
lightweight V2V communication module based on MQTT, a
publish—subscribe protocol suitable for low-bandwidth, high-
frequency data exchange.

In our setup, the lead vehicle (LV) continuously publishes
its velocity and front camera images to a local MQTT broker.
The second lead vehicle (LV2), driving in an adjacent lane,
publishes lane-related information such as its current lane ID
and occupancy status. All data is encoded in JSON format and
includes timestamps to ensure synchronization.

The ego vehicle (EV) subscribes to both data streams.
While LV images are transmitted at 20 Hz, the EV stores
them at a reduced rate of 2 Hz to balance performance and
memory usage. This asynchronous sharing of velocity, vision,
and lane status enables the EV to supplement its own visual
input with cooperative information, especially in situations
where visibility is degraded due to fog. This communication
scheme is essential for enabling downstream modules, such
as scene matching and adaptive control, to function reliably
under adverse conditions.

C. Scene Matching Algorithm

To establish visual consistency between vehicles, we apply
a scene matching pipeline that compares detected event objects
from the EV and the LV using intermediate features extracted
from YOLOVS.

First, both EV and LV images undergo object detection
using the trained YOLOvVSs model. We focus on detecting
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Fig. 5: ROI Align Architecture for Feature Extraction.

two types of objects: base classes (e.g., trees, streetlamps)
and event classes (e.g., traffic signs, warning signs, adver-
tisements). However, only event objects are used for scene
matching, as they are more distinct and informative across
different viewpoints.

For each detected event object, we extract features us-
ing region-of-interest (ROI) Align from the fourth layer of
YOLOvVS’s backbone. ROI Align generates fixed-size 7x7
feature maps that preserve spatial precision, enabling reliable
comparisons even when objects appear at different scales or
angles. The feature extraction process is illustrated in Fig. 5.

We then compute the cosine similarity between correspond-
ing event object features from the EV and LV. If the similarity
exceeds a predefined threshold, denoted as 7y, the pair is
considered a match. Scene similarity is quantified by the match
ratio—the proportion of matched event objects relative to total
detections. This metric serves as the basis for both distance
estimation and fail-safe activation.

D. Enhanced Multi-Stage Distance Estimation

We estimate the distance between the EV and the LV
using a two-stage method that combines V2V data with visual
correction based on scene matching. In the first stage, we
compute an initial distance estimate D based on the LV’s
velocity vy (received via V2V) and the time difference At
between when the LV and EV captured matching scenes:

D =uv;- At (1)

Here, At is calculated using timestamps from the LV’s trans-
mitted image and the EV’s current frame. This gives a rough
approximation of the distance based on temporal separation.
In the second stage, this estimate is refined using visual
information. Specifically, we compare the bounding box areas
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based on estimated inter-vehicle distance and V2V lane in-
formation.

of matched event objects between the two vehicles. Since the
apparent size of an object in an image is inversely related to
its distance, the area ratio provides a cue for correction:

where A7 and Alf are the areas of the i-th matched object in
the EV and LV images, respectively, and n is the number of
matched objects. The correction coefficient « is empirically
set to 0.15 to ensure stable adjustment within +5%. This two-
stage approach enables accurate distance estimation even when
visual input is partially degraded, by combining temporal V2V
data with spatial visual cues.

E. Vehicle Control Execution and Fail-Safe Mechanism

The final distance estimate D computed from scene match-
ing and V2V communication feeds directly into the control
logic, which determines safe driving actions based on real-time
conditions. A custom controller then executes these actions
through throttle, brake, and steering commands, extending
CARLA’s BasicAgent functionality.

Fig. 7 illustrates this adaptive decision-making process. The
system classifies the inter-vehicle distance into several ranges
to determine the appropriate response:

« When the estimated distance is below a critical threshold,
denoted as D,,, it is considered a close proximity risk,
triggering emergency braking or a possible lane change.

o« When the distance exceeds a safe driving threshold,
denoted as Dy, the system accelerates to optimize driving
efficiency while remaining cautious.

o Within a maintenance range, i.e., D,, < D < D, the
vehicle adjusts its speed to maintain a steady distance.

To support safe lane changes, the system uses real-time lane
occupancy data received from LV2 via V2V communication.
Before initiating a maneuver, it checks adjacent lanes for
availability and only proceeds when a safe option is confirmed.

In addition, a Fail-Safe mechanism is integrated to handle
perception failure or system instability. If the scene similarity
score falls below a preset threshold, denoted as 7, or object

i

Ego Vehicle \\.A

Fig. 7: Ego vehicle and lead vehicle camera view in fog with
object detection.

Lead Vehicle

Fig. 8: Example of an adaptive lane change maneuver per-
formed due to close-proximity risk detection, leveraging V2V
lane occupancy information.

detection becomes unreliable due to extreme fog, the vehicle
switches to a safe fallback mode. In this mode, the EV slows to
a minimum speed, maintains a conservative following distance,
or activates hazard lights. This mechanism ensures that the
vehicle remains operational and safe even in severely degraded
conditions, and can prompt driver intervention if necessary.

IV. EXPERIMENTAL RESULTS

We evaluated our system in the CARLA simulator under
various fog densities, focusing on four key aspects: object
detection performance, distance estimation accuracy, adaptive
control behavior, and real-time processing capability. Each
component was tested using controlled driving scenarios with
synthetic fog ranging from light to dense, as detailed in Sec-
tion II-B. The results demonstrate how our system maintains
robust perception and safe vehicle control using only cameras
and V2V communication, even when visibility is severely
degraded.

A. Simulation Results Visualization

Fig. 7 shows an example of object detection and scene
matching in dense fog. Despite low visibility, both the EV and
LV successfully detect common road elements such as trees
and traffic signs. Matched objects yield high cosine similarity
scores (typically ; 0.6), indicating strong visual consistency
between vehicle perspectives.

Fig. 8 presents a successful lane change scenario triggered
by a close-proximity event. When the estimated distance to the
LV dropped below the safety threshold, and lane occupancy
information from LV2 confirmed that the adjacent third lane
was available, the EV executed a smooth and safe lane change.
This illustrates the system’s ability to combine visual and V2V
information for real-time adaptive control.
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TABLE I: Object Detection Performance (AP and F1 Score)
in Fog Density 60%.

Index Tree Streetlamp Streetsign01 Str g Adverti Warning
AP 0.939 0.967 0.972 0.978 0.967 0.946
F1 0.915 0.936 0.942 0.935 0.890 0.903

V2V-Assisted

/ \
/' Camera-Only \

Fig. 9: Comparison of perception range and safe following dis-
tance between a Camera-Only YOLO system and the proposed
V2V-Assisted system in foggy conditions.

B. Object Detection Performance

We evaluated the trained YOLOvSs model under foggy
conditions to assess its ability to detect both base and event ob-
jects. Table I shows the average precision (AP) and F1 scores
for each class at a representative fog density of 60%. The
model achieved high performance across most object types,
with AP values exceeding 0.93 and F1 scores above 0.89.
Notably, structured objects like traffic signs and streetlamps
showed slightly higher detection accuracy than more variable
or less distinct objects such as advertisements and warning
signs.

While increasing fog density generally led to a minor
drop in accuracy—especially for small or visually ambiguous
objects—the overall detection quality remained sufficient for
downstream processing. In particular, the stable detection of
event-class objects provided a reliable foundation for scene
matching, which depends heavily on accurate localization of
such features. Furthermore, the use of V2V-shared images
from the lead vehicle helped compensate for occasional detec-
tion failures on the EV side, enhancing the overall robustness
of the perception pipeline under adverse conditions.

C. Comparison with Camera-Only System: Perception Range
and Safe Distance

To highlight the benefits of integrating V2V communication,
we compared our system with a conventional camera-only
YOLOVS setup under foggy conditions. Fig. 9 illustrates the
difference in perception range and safe following distance. In
the camera-only system, stable object detection was possible
only within approximately 13.6 meters in dense fog. At a
driving speed of 60 km/h, this distance is traversed in just
0.8 seconds—insufficient time for reliable braking or control,
posing a serious safety risk.

By contrast, the proposed system significantly extended the
perception horizon. Through V2V communication and scene
matching, the ego vehicle was able to maintain consistent
tracking of the lead vehicle and preserve a safe following

(a) Fog Density 0% (b) Fog Density 20% (c) Fog Density 30%

(f) Fog Density 100%

(d) Fog Density 40% (e) Fog Density 60%

Fig. 10: Visual representation of varying fog densities (0%
to 100%) as simulated in the CARLA environment with
object detections overlaid. Each subfigure illustrates the visual
conditions at a specific fog density level.

distance, even in dense fog. The system maintained inter-
vehicle spacing within the defined safety thresholds (D,, =
40——60 m, Dy = 60 m), which would not have been possible
with visual input alone. These results demonstrate the critical
role of V2V assistance in adverse weather, where reliance
on camera input alone leads to unsafe proximity and delayed
reactions.

D. Distance Estimation Accuracy vs. Fog Density

To evaluate the reliability of our distance estimation algo-
rithm, we tested its performance under varying fog densities,
using both the initial estimate (from V2V time offset) and
the corrected value (using visual area ratios). Fig. 10 visually
represents these varying fog conditions. Table II summarizes
the results across five levels of fog density.

The initial estimate achieved accuracy between 85% and
91%, depending on visibility. After applying the visual correc-
tion stage, accuracy consistently improved, exceeding 90% in
all cases and reaching up to 94.18% at 100% fog density. The
correction coefficient o = 0.15, introduced in Equation (2),
was empirically chosen to ensure that the average correction
ratio remained within +5%. This setting provided a stable
balance between under- and overestimation, even when the
number of matched objects varied due to visual occlusion.
These results demonstrate that the two-stage estimation pro-
cess—starting with V2V-based timing and refining via visual
similarity—offers robust and adaptive distance tracking across
a wide range of visibility conditions.

E. Scene Matching Performance and Real-Time Capability

Fig. 11 illustrates the performance of our scene matching
algorithm across various fog densities, detailing both the initial
object detection capability and subsequent matching accuracy.
As shown in Fig. 11(a), the bounding box count remains high
at moderate fog levels, indicating robust initial object detection
by YOLOVSs. However, at 100% fog density, the number of
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TABLE II: Distance Estimation Accuracy vs. Fog Density.

Fog Density (%) Initial Accuracy (%) Corrected Accuracy (%)

20 85.86 91.69
30 87.94 91.17
40 89.65 93.58
60 88.98 93.58
100 90.72 94.18
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Fog Density

(b) Scene Match Count

Fog Density

(a) Bounding Box Count

Fig. 11: Scene Matching Performance across various fog
densities. (a) illustrates the total number of bounding boxes
detected by YOLOVSs, and (b) shows the count of success-
fully scene-matched objects. Both metrics are presented as a
function of increasing fog density.

detected bounding boxes sharply decreases due to the severe
visual obscuration of objects. Correspondingly, Fig. 11(b)
shows that the scene matching count also exhibits a similar
trend, directly impacted by the initial detection performance.
At 100% fog density, the sharp decrease in scene matching
accuracy is primarily attributed to the reduced bounding box
count, as insufficient initial detections make feature vector
comparison impossible.

The entire perception to control loop, including the scene
matching algorithm implemented with ThreadPoolExecutor for
parallel processing, executed in an average of 0.3 seconds. This
satisfies the real-time requirements for autonomous driving
systems. The Fail-Safe system was also confirmed to operate
as designed in all tested conditions, switching to a safe
mode upon scene matching failures or system instability, thus
enhancing overall system reliability.

V. CONCLUSION

We presented a practical and cost-effective system that
combines YOLOvS5-based object detection with V2V com-
munication to address the challenges of autonomous driving
in foggy conditions. By integrating scene matching using
ROI Align and a two-stage distance estimation algorithm,
the system achieved robust perception and safe inter-vehicle
control without relying on expensive sensors like LiDAR. Ex-
tensive simulation in the CARLA environment demonstrated
that our approach maintains over 90% distance estimation
accuracy and real-time processing performance (;0.3 seconds),
even under dense fog. The system also incorporates adaptive
lane control and a Fail-Safe mechanism, ensuring safe op-
eration in degraded visual environments. Our results suggest
that combining vision-based detection with lightweight V2V

communication is a viable alternative for reliable cooperative
driving under adverse weather.
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