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Abstract—The limited field of view in conventional side mirrors
of vehicles poses serious safety risks, particularly during right
turns or highway merges where the left-side rear area is often
obscured. While digital side mirrors (DSM) offer partial improve-
ments, they fall short in dynamically addressing blind spots in
real time. This paper presents an intelligent side mirror control
system that automatically adjusts the left-side mirror angle based
on real-time driving context. To meet the dual demands of high
accuracy and low latency, the system employs a lightweight
convolutional neural network (CNN) with a BranchyNet-inspired
multi-exit architecture. By enabling early exits under high-
confidence predictions using entropy-based criteria, the model
significantly reduces inference latency while maintaining reli-
able performance. Experiments on a custom real-world driving
dataset demonstrate that the proposed method achieves up to
97.4% classification accuracy with an average inference time of
1.7 ms, making it suitable for embedded deployment in driver-
assistance systems.

Index Terms—Convolutional Neural Network, Multi-exit neu-
ral network, Advanced Driver Assistance Systems (ADAS), blind
spot, real-time systems.

I. INTRODUCTION

Ensuring comprehensive situational awareness is essential
for safe driving, particularly during complex maneuvers such
as highway merges and right turns at intersections. These
scenarios often expose the left-rear zone of the vehicle to
occlusions, creating blind spots that are difficult for drivers
to perceive. Conventional side mirrors and even digital side
mirrors (DSMs) are limited in their ability to fully eliminate
these blind spots, especially under dynamic conditions. Inade-
quate visibility in such occluded regions has been identified as
a key factor contributing to traffic accidents, particularly when
drivers must make rapid decisions with limited information.

Recent work in autonomous driving has sought to charac-
terize and mitigate blind spots through advanced perception
and simulation techniques. For example, the authors of [1]
used high-fidelity 3D simulations and Monte Carlo-based
reference sensors to estimate sensor coverage and blind spot
regions in autonomous vehicle designs. While their approach
provides valuable insights into sensor limitations and layout
optimization, it is intended for system design and evaluation
rather than real-time support for human drivers. Similarly,
Hubmann et al. [2] addressed safety in left-turn maneuvers
at urban intersections using dynamic occupancy grid maps
and multi-object tracking. Their system models unobservable
regions and anticipates potential object movements to support
trajectory planning. Although such methods are effective in

autonomous systems, they require extensive sensor suites and
high computational overhead, making them unsuitable for
lightweight, real-time assistance in conventional vehicles.

Full-surround multi-object tracking (MOT) methods, such as
those proposed by [3], have further improved environmental
awareness by fusing data from camera and LiDAR sensors
in a unified 3D coordinate space. While this enables robust
tracking for autonomous navigation, it again depends on
costly hardware configurations and is primarily aimed at high-
level decision-making rather than direct driver support. Other
research efforts have explored active physical interventions
to enhance driver awareness. Kuwana et al. [4] proposed the
Dynamic Angling Mirror System (DAMS) and its enhanced
version (EDAMS), which adjust the mirror’s yaw angle in
response to nearby vehicles entering the blind spot. Their
simulation-based study showed improved situational aware-
ness and reduced collision risk, particularly for right-side blind
spots during lane changes. However, these systems operate
reactively, activating only after detecting nearby vehicles,
and lack proactive prediction of high-risk scenarios based on
driving context. Moreover, their scope was limited to right-
side blind spots and did not incorporate intelligent perception
mechanisms based on machine learning.

Despite these advancements, there remains a clear gap in
developing lightweight, real-time mirror control systems that
proactively respond to blind spot scenarios using onboard
video streams and efficient neural models. Existing approaches
either rely on complex sensor infrastructures or offer only lim-
ited reactive support without predictive situational awareness.

In this paper, we present an intelligent side mirror control
system that proactively adjusts the left-side mirror to improve
driver visibility during right turns and highway merges. Unlike
existing systems designed for autonomous vehicles [2], [3]]
or reactive mirror adjustment mechanisms [4], our approach
supports human drivers using a lightweight, context-aware
framework. The system utilizes onboard video streams and
optional GPS data to detect high-risk scenarios, activating
only under relevant driving conditions. This proactive control
avoids unnecessary mirror movement and ensures that the
system responds precisely to visibility-critical situations.

To achieve real-time responsiveness with high accuracy,
we adopt a multi-exit CNN inspired by BranchyNet. The
model enables early exits based on prediction confidence, sig-
nificantly reducing latency without compromising reliability.
A loss-weighting scheme during training further tunes the
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Fig. 1: Operational Conditions for the Automatic Downward-
Tilting Side Mirror System

accuracy-latency trade-off, making the system adaptable to
various deployment environments. Our experiments on a real-
world driving dataset demonstrate that the proposed method
achieves robust classification performance with minimal com-
putational overhead, highlighting its feasibility for embedded
deployment in Advanced Driver Assistance Systems (ADAS).

The remainder of this paper is organized as follows. Sec-
tion II introduces the overall system architecture and outlines
the problem formulation. Section III details the proposed
multi-exit neural network structure, the entropy-based infer-
ence mechanism, and the training methodology. Section IV
presents the experimental setup, dataset construction, and
performance evaluation under various configurations. Finally,
Section V concludes the paper and discusses potential direc-
tions for future work.

II. SYSTEM MODEL

The proposed system targets a specific yet critical driving
safety issue: the inability of conventional side mirrors to
adequately reveal the left-side blind spot during right turns
and highway merges. In such scenarios, the driver often lacks
visibility into the diagonally rearward region, where nearby
vehicles may approach. This issue is further compounded
by the limited field of view of standard and even DSMs,
which typically provide an angular coverage of only about
29 degrees, falling short of the 45 degrees or more required
for safe merging or turning.

To address this challenge, we design an intelligent mirror
control system that dynamically tilts the left-side mirror under
specific driving conditions to expose the obscured area. This
function is particularly vital when navigating intersections or
highway entry ramps, where the inability to detect approaching
vehicles can lead to serious collisions. A key aspect of the
design is context-aware activation. The system avoids unnec-
essary mirror adjustments by evaluating the driving context
rather than simply reacting to the use of a turn signal. For
example, a signal-activated lane change on a straight road
should not trigger the system, whereas a tight corner without
signal use might still warrant mirror adjustment. This approach
minimizes false activations and enhances system reliability.

To determine activation conditions, the system processes
real-time input from a forward-facing camera (e.g., dashboard
or black box camera), and optionally leverages GPS data for
geographic context. A lightweight CNN model analyzes the

Fig. 2: State diagram of the process for setting the angle of
the automatic left-hand side mirror

video frames to assess whether the current situation corre-
sponds to predefined high-risk conditions, including:

• Approaching a right-turn intersection or highway merge
zone

• Detectable vehicle motion indicating a turning or merging
maneuver

• Limited visibility in the left-side diagonal field
The CNN outputs a binary classification indicating whether

mirror adjustment is required. To enable low-latency response,
the model adopts a BranchyNet-style architecture with multi-
ple early-exit branches, allowing inference to terminate early
in simple or high-confidence scenarios. Figure 1 illustrates the
operational scenarios targeted by the system, and Figure 2
presents the control flow diagram of the mirror adjustment
logic. In parallel, a GPS-based logic module refines system
decisions by identifying predefined high-risk locations. The
module cross-references current GPS coordinates with a stored
database of known intersection or merge points. If the vehicle
is outside of these zones, the system suppresses mirror adjust-
ment, even if the CNN predicts activation, thereby preventing
false positives in irrelevant contexts.

This dual-module architecture, which combines video-based
scene classification with location-aware filtering, forms the
foundation of the proposed system. It ensures that the mir-
ror adjustment is both timely and contextually appropriate,
enabling a responsive and computationally efficient solution
to a long-standing visibility issue in human-driven vehicles.

III. TRAINING OF WING MIRROR CONTROL AUTOMATION

To enable accurate and timely mirror control decisions, we
trained a lightweight CNN to recognize driving situations that
require left-side blind spot mitigation. This section introduces
the dataset used for training, the design of the multi-exit neural
network, and the training procedure.
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Fig. 3: Samples of Dataset labeled as ‘0’ (Left) and ’1’ (Right)

A. Dataset

Since no public datasets directly address our problem, which
detects driving contexts that warrant automatic mirror adjust-
ment, we constructed a custom dataset tailored to this task. The
data was collected from dashboard camera footage recorded
during real-world driving across three metropolitan areas in
South Korea: Incheon, Seoul, and Suwon. These locations
were selected to reflect a wide range of road geometries,
traffic patterns, and environmental conditions. To improve
generalizability, we included various driving environments
such as urban roads, intersections, and highways, as well
as diverse conditions including day and night driving, and
both clear and rainy weather. From the raw black box videos,
individual frames were extracted based on the device’s native
frame rate. We manually filtered the frames to retain only those
containing intersections or highway merge points—situations
in which blind spot awareness is especially important.

Each selected image was labeled using a binary scheme:
frames corresponding to conditions that require mirror ad-
justment (e.g., approaching a right turn or merging scenario)
were labeled as ‘0’, while others were labeled as ‘1’. Figure
3 shows example images for each class. In total, we collected
44,000 labeled images. For training, we used 20,000 images
per class, and set aside 2,000 images per class for validation.
Notably, the CNN model does not use GPS data directly.
Instead, geographic context, such as whether the vehicle is
near a known intersection, is handled separately by a GPS-
based logic module during deployment. For this, we recorded
GPS coordinates of key intersections and merge points in
the Suwon area, which are used to suppress false activations
outside relevant zones. This dataset serves as the foundation
for training and evaluating the proposed model in real-world
driving scenarios.

B. Multi-Exit CNN Architecture

To achieve a balance between inference accuracy and re-
sponsiveness, we adopt a multi-exit CNN architecture based
on the BranchyNet framework [5]. This structure allows the
network to produce predictions at multiple depths and exit
early if the confidence is high, thereby reducing latency
in straightforward cases without sacrificing performance in
more complex scenes. Our implementation uses ResNet-101
as the backbone, with three exit branches placed after the
first, third, and fifth convolutional blocks, respectively. Each
branch includes a separate fully connected layer and softmax
classifier. The final exit corresponds to the standard output

Fig. 4: The architecture of the BranchyNet-based ResNet-101

of the full ResNet-101 network. Figure 4 shows the overall
architecture of the model.

During inference, the decision to exit at a given branch is
based on the model’s confidence in its prediction. Specifically,
we use the Shannon entropy of the softmax output at each exit
to quantify uncertainty. Let ŷn = [ŷn,1, ŷn,2, . . . , ŷn,C ] be the
softmax probability vector at the n-th exit, where C = 2 is
the number of classes. The entropy at this exit is computed
as:

Hn = −
C∑

c=1

ŷn,c log ŷn,c. (1)

Here, if the entropy Hn is below a predefined threshold Tn,
the model exits at that branch and returns the corresponding
class prediction. Otherwise, it continues to the next exit. This
mechanism makes it possible to dynamically adapt the depth
of inference based on input complexity.

The entropy threshold Tn acts as a tuning parameter for the
speed–accuracy trade-off:

• A lower threshold requires higher confidence to exit
early, resulting in deeper inference and potentially higher
accuracy at the cost of increased latency.

• A higher threshold allows earlier exits, reducing average
latency but with the risk of premature decisions in am-
biguous scenes.

In this study, we set Tn = 0.025 for all exits, following
recommendations from prior work [5]. We further analyze the
effect of different thresholds in Section IV.

This early-exit mechanism is particularly well-suited for
real-time applications like ADAS, where quick, confident
decisions are preferred in typical situations, while deeper
analysis is reserved for edge cases. Algorithm 1 outlines the
entropy-based inference procedure used in our system.

C. Training Method

The goal of training is to ensure that all exit branches in
the network produce reliable predictions, enabling the system
to adaptively balance accuracy and latency. To this end, we
define a composite loss function that combines the cross-
entropy losses from each exit, allowing the model to learn
representations useful at multiple depths.

Let ŷn = [ŷn,1, ŷn,2] denote the predicted class probabilities
at exit n ∈ {1, 2, 3}, and let y = [y1, y2] denote the one-hot
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Algorithm 1 BranchyNet Inference Algorithm

1: procedure BRANCHYNET INFERENCE(x, T )
2: for n = 1 . . . N do
3: z = fexitn(x)
4: ŷ = softmax(z)
5: e ← entropy(ŷ)
6: if e < Tn then
7: return argmax ŷ
8: end if
9: end for

10: return argmax ŷ
11: end procedure

encoded ground truth label. The cross-entropy loss at exit n
is defined as:

Ln(ŷn,y) = −
2∑

c=1

yc log ŷn,c. (2)

To jointly train the entire network, we aggregate the losses
from all exits and generate the total training loss by taking the
weighted sum of the individual exit losses, as given by

Ltotal =
N∑

n=1

γnLn(ŷn,y), (3)

where γn ∈ [0, 1] is the weight assigned to the n-th exit,
satisfying

∑N
n=1 γn = 1. This weighting allows fine-grained

control over the model’s behavior. For instance, giving more
weight to early exits encourages the network to optimize
for faster predictions, which is beneficial in latency-critical
scenarios. Conversely, emphasizing deeper exits improves final
accuracy at the cost of increased computation.

During backpropagation, gradients from each loss compo-
nent are propagated through the shared feature extractor up to
their respective exit points. This setup ensures that all branches
contribute to training while allowing earlier layers to receive
stronger gradient signals, which helps stabilize learning and
reduces the risk of vanishing gradients. Additionally, this form
of joint optimization acts as a form of regularization, im-
proving generalization by aligning predictions across multiple
abstraction levels [5]. We train the model using Stochastic
Gradient Descent (SGD) with momentum. Table I summarizes
the training hyperparameters. All training runs used a batch
size of 64 and were conducted for 100 epochs. The learning
rate was set to 0.01, with a momentum of 0.9 and a weight
decay of 0.0001.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

To evaluate the effectiveness of the proposed multi-exit
CNN architecture, we conducted extensive training and val-
idation using the custom dataset described in Section III-A.
To ensure a fair evaluation, the test set was constructed from
driving scenes that were entirely separate from the training
and validation data.

TABLE I: Parameters and Environment for Training

Parameter

Epoch 100
Batch Size 64
Momentum (for SGD optimizer) 0.9
Weight Decay (for SGD optimizer) 0.0001
Learning Rate 0.01

TABLE II: Accuracy and latency per exit

Exit Acc. (%) Latency (ms) Usage (%)

Exit 1 93.750 0.68 64.1
Exit 2 96.438 2.5 22.1
Exit 3 98.656 4.72 13.8

Total 97.41 1.7 –

All experiments were performed on a high-performance
desktop equipped with an NVIDIA GeForce RTX 3090 GPU
(24 GB VRAM). The software environment consisted of
Ubuntu 22.04 LTS, Python 3.9, and PyTorch 2.2. CUDA 11.8
and cuDNN 8.9 were used to accelerate GPU computation.
The dataset was preprocessed by extracting frames from
driving videos, resizing them to a consistent resolution, and
balancing the number of samples across the two class labels.
All annotations were performed manually and carefully veri-
fied for consistency. To ensure the reliability of results, each
experiment was repeated three times. Performance metrics
including classification accuracy and inference latency were
averaged across runs to account for variance. This evaluation
setup provides a realistic estimate of the model’s performance
under deployment conditions and reflects the computational
demands of real-time operation in embedded systems.

B. Performance Evaluation

We evaluated the trained model based on two primary
metrics: classification accuracy and inference latency. Special
attention was given to the effectiveness of the entropy-based
early-exit mechanism. Using a fixed entropy threshold of
Tn = 0.025, we measured the performance at each exit branch
individually. As shown in Table II, the accuracy increased
with the depth of the network. The first exit achieved 93.75%
accuracy with an average inference time of 0.68 milliseconds.
The second exit improved accuracy to 96.44% with 2.5
milliseconds of latency, while the final exit reached 98.66%
accuracy at a latency of 4.72 milliseconds.

When adaptive inference was applied using the entropy-
based exit strategy, the system dynamically determined the
appropriate exit point based on prediction confidence. Under
the fixed threshold, the overall classification accuracy reached
97.41%, with the average inference time reduced to 1.7 mil-
liseconds. This latency reduction was primarily driven by the
frequent use of the earliest exit, which was selected in 64.1%
of cases. The second and third exits were used in 22.1% and
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Fig. 5: Results from training with a weighted sum of γ1 =
0.4, γ2 = 0.3, γ3 = 0.3

Fig. 6: Results from training with a weighted sum of γ1 =
0.5, γ2 = 0.3, γ3 = 0.2

13.8% of cases, respectively. These results demonstrate that
the proposed early-exit mechanism effectively maintains high
prediction accuracy while significantly lowering computational
cost. The ability to exit early in straightforward scenarios
allows the system to respond quickly without compromising
reliability, making it suitable for real-time use in driver-
assistance applications where both speed and accuracy are
critical.

C. Impact of Hyperparameters

To investigate how training-time loss weighting affects the
model’s behavior, we experimented with three different exit-
wise weighting schemes: uniform, moderately front-loaded,
and strongly front-loaded configurations. The results indicate
that increasing the weight assigned to earlier exits gener-
ally improves their classification accuracy, as the model is
more strongly encouraged to optimize performance at shallow
layers. However, this comes at the cost of slightly reduced
accuracy in the deeper exits, suggesting a trade-off in repre-
sentational focus across the network.

For instance, when using a strongly front-loaded configu-
ration with weights γ1 = 0.5, γ2 = 0.3, γ3 = 0.2, the first
exit achieved the highest accuracy among all configurations,
but the final exit showed a minor drop in performance. This
behavior reflects the effect of stronger gradient signals at the

TABLE III: Performance comparison with different γ weights

γ Exit Acc. (%) Latency (ms)

γ1 = 0.333 Exit 1 93.750 0.68
γ2 = 0.333 Exit 2 96.438 2.5
γ3 = 0.333 Exit 3 98.656 4.72

Tn = 0.025 Overall 97.41 1.7

γ1 = 0.4 Exit 1 94.340 0.68
γ2 = 0.3 Exit 2 96.568 2.5
γ3 = 0.3 Exit 3 97.104 4.72

Tn = 0.025 Overall 96.98 1.5

γ1 = 0.5 Exit 1 95.134 0.68
γ2 = 0.3 Exit 2 95.198 2.5
γ3 = 0.2 Exit 3 96.882 4.72

Tn = 0.025 Overall 95.2 0.88

TABLE IV: Performance comparison with different Tn thresh-
olds

Tn Exit Acc. (%) Usage (%)

0.01
Exit 1 93.750 53.4
Exit 2 96.438 32.1
Exit 3 98.656 14.5

γ = 0.333 Overall 98.45 -

0.025
Exit 1 93.750 64.1
Exit 2 96.438 22.1
Exit 3 98.656 13.8

γ = 0.333 Overall 97.41 -

0.05
Exit 1 93.750 85.2
Exit 2 96.438 10.9
Exit 3 98.656 3.9

γ = 0.333 Overall 94.24 -

early stages of the network, which helps stabilize training for
shallow exits while limiting the learning capacity of deeper
branches. On the other hand, the uniform weighting scheme
(γ1 = γ2 = γ3 = 0.333) yielded the highest overall accuracy
across all exits but resulted in a higher average inference time
due to more frequent use of the later exits.

When tested under the entropy-based adaptive inference pol-
icy with a fixed threshold of Tn = 0.025, models trained with
more front-loaded weights tended to favor earlier exits more
confidently. As a result, these models showed lower average
inference latency while still maintaining reasonable overall
accuracy. This outcome demonstrates that loss weighting is
a practical tool for shaping the model’s runtime behavior. Ap-
plications requiring low-latency decision-making can benefit
from assigning higher weights to earlier exits during training,
whereas use cases demanding maximum accuracy may prefer
uniform or deeper-weighted configurations.
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We further analyzed the effect of varying the entropy thresh-
old Tn itself, which directly influences the model’s tendency
to exit early. A more lenient threshold of 0.05 led to more
aggressive early termination, with over 85% of predictions
completed at the first exit. While this greatly reduced average
latency, it also slightly decreased overall accuracy. In contrast,
a stricter threshold of 0.01 required higher confidence for
early exits, shifting more predictions to the deeper branches
and achieving higher overall accuracy at the cost of increased
inference time.

These results highlight the flexibility of the proposed frame-
work, where training-time loss weights and inference-time
entropy thresholds offer complementary ways to balance speed
and accuracy. Depending on system constraints and application
requirements, the model can be tuned to favor responsiveness,
precision, or a desired balance of both.

V. CONCLUSION

This paper presented an intelligent side mirror control
system designed to proactively address left-side blind spots
during right turns and highway merges. To achieve both
fast and reliable decision-making, we employed a multi-exit
CNN architecture inspired by BranchyNet, allowing early
exits based on entropy thresholds. The model was trained
using a custom real-world driving dataset and optimized via
a weighted loss function that balances accuracy and inference
latency. Experimental results demonstrated that the proposed
approach maintains high classification accuracy while signifi-
cantly reducing average inference time. By adjusting the loss
weights across exits and tuning the entropy threshold during
inference, the system can be tailored to different performance
requirements, making it well-suited for real-time deployment
in embedded driver-assistance systems.
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