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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
used for line coverage, mapping, and surveillance, where ef-
ficiency and cost-effectiveness are critical. A key challenge in
real-world deployments is that required edges often demand
different sensors, yet most prior studies assume UAVs carry
only a single sensor type. This work addresses UAV coverage
optimization under strict time and energy limits in heterogeneous
sensor environments. We develop and compare two strategies: (i)
a Greedy algorithm, where each UAV carries a single sensor
and services only compatible edges, and (ii) a Multiple Sensors
algorithm, where each UAV carries all required sensors and can
cover any edge. Using urban datasets from New York, London,
and Tehran, we demonstrate distinct trade-offs. The Greedy al-
gorithm achieves the lowest overall operational cost by balancing
fleet size and energy consumption, whereas the Multiple Sensors
algorithm minimizes the number of UAVs required but incurs
higher per-UAV energy usage due to increased payload. These
findings provide practical guidelines for selecting deployment
strategies based on mission priorities—whether minimizing fleet
size or reducing total cost—and support UAV applications in
urban planning, disaster response, and smart city operations.

Index Terms—UAVs, Sensors, Line coverage, Multi-sensor
UAVs, Heterogeneous environments, Coverage optimization

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as indis-
pensable tools in disaster response, infrastructure inspection,
surveillance, and environmental monitoring [1]. Their ability
to access hazardous or remote areas enables rapid assessment
of conditions—such as flood-damaged roads or malfunctioning
power lines—supporting faster and more informed decision-
making. However, inherent limitations in battery capacity,
payload weight, and flight endurance necessitate careful oper-
ational planning to ensure complete and efficient coverage of
target areas [1].

To address these challenges, researchers have investigated
various coverage strategies tailored to different operational
needs. Among these, a key paradigm is line coverage, where
UAVs traverse and inspect linear infrastructures (e.g., roads,
pipelines, transmission lines) under strict time and con-
straints [2], [3]. In sensor-diverse environments, each required
edge may demand a specific sensor (RGB camera, LiDAR,
infrared, radar, ultrasonic), which complicates both resource
allocation and routing [4]. Achieving efficiency in such set-
tings involves addressing:

• Optimal Path Planning: Minimizing travel distance
and energy consumption while ensuring full edge cov-
erage [5]–[7].

• Sensor Allocation: Matching UAV sensing capabilities to
edge requirements; evaluating trade-offs between single-
sensor platforms and multi-sensor payloads [4], [8].

• Coordination: Managing multiple UAVs operating over
large or obstructed areas [9], [10].

• Battery/Energy Management: Balancing energy use be-
tween active coverage and deadheading; selecting speeds
and routes that respect endurance limits [5], [6].

Traditional routing approaches often assume homogeneous
sensors and can underperform when sensing requirements vary
across edges [2], [3]. This paper examines two strategies
tailored for heterogeneous environments:

1) Greedy with diverse sensors — each UAV carries a
single sensor type and services the nearest compatible
required edge.

2) UAVs with multiple sensors — each UAV carries all
required sensors, enabling unrestricted coverage at the
cost of higher payload and energy consumption.

We evaluate both algorithms on five real-world ur-
ban datasets—New York, London, Paris, Istanbul, and
Tehran—under identical operational constraints. The Greedy
approach is expected to reduce total operational cost, while
the Multiple Sensors approach aims to minimize fleet size.

The contribution of this paper is summarized as follows:
• Development and implementation of two UAV coverage

algorithms designed for heterogeneous sensor require-
ments.

• Comparative evaluation across multiple cities, analyzing
UAV count, energy consumption, and operational cost.

• Practical guidance on when to prioritize cost efficiency
(Greedy) versus minimizing fleet size (Multiple Sensors)
in real deployments.

The rest of the paper is organized as follows. Section II
reviews related works and background on UAV coverage, sen-
sor allocation, and energy-aware planning. Section III formally
defines the problem and presents the modeling assumptions.
Section IV details the two proposed algorithms—Greedy with
diverse sensors and UAVs with multiple sensors. Section V
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reports simulation results and comparative analysis across
multiple city datasets. Finally, Section VI concludes the paper
and discusses directions for future research.

II. RELATED WORKS AND BACKGROUND

UAV-based line coverage has been investigated for map-
ping, inspection, and surveillance [1]–[3]. Core challenges
include efficient route planning, sensor allocation, and energy
optimization, particularly when each edge requires a specific
sensing modality [4]. Foundational work on line coverage
with one or more robots provides theoretical and experimental
baselines for traversing required edges efficiently [2], [3],
[11]. In practice, minimizing both servicing and deadhead
motion under endurance and kinematic constraints is crucial
for scalability to realistic road networks [2], [3], [12]. Multi-
UAV sweep-coverage strategies further explore coordination
and task partitioning to reduce mission time [9], [10]. Sen-
sor selection strongly influences mission performance and
feasibility. RGB cameras support high-resolution imaging;
LiDAR enables 3D mapping; infrared sensors capture thermal
signatures; radar/ultrasonic systems assist in obstacle detec-
tion and safety [4]. Multi-sensor fusion frameworks improve
robustness and accuracy but increase payload mass and energy
consumption [8]. These trade-offs motivate our comparison of
(i) single-sensor Greedy assignment versus (ii) multi-sensor
UAVs that can service any edge. Energy-aware coverage em-
phasizes reducing deadhead distance and planning smoother,
kinematically feasible trajectories. Online coverage planning
that accounts for energy [5], surface/graph shortest paths (e.g.,
extended Dijkstra) [6], and occlusion-aware reconnaissance in
complex environments [7] have all demonstrated measurable
energy savings and improved coverage consistency. These
principles inform our evaluation setup (speeds, power models,
and return-to-depot constraints). While prior studies separately
address route optimization [2], [3], [5]–[7], [12] and sensor
considerations [4], [8], fewer works evaluate their combined
impact in heterogeneous settings. We address this by compar-
ing two sensor-allocation strategies under identical routing and
operational assumptions, reporting on energy use, UAV count,
and cost.

III. PROBLEM STATEMENT

This study addresses the UAV coverage problem in a
heterogeneous sensor environment, where each required edge
in a network demands a specific sensing capability (e.g., RGB,
LiDAR, infrared). The goal is to cover all required edges
efficiently while minimizing total energy consumption and
operation time, under a strict mission time limit.

UAV operations consist of:
• Servicing: Traversing required edges with the appropriate

active sensor, consuming higher energy at the service
speed Ssvc.

• Deadheading: Traveling along non-required edges (logis-
tical movement) without active sensing, consuming less
energy at a higher deadhead speed Sdh.

Each UAV operates under a maximum mission duration
Tlim, and is dynamically allocated based on available time,
energy, and sensor compatibility. A UAV is deactivated once
it cannot service the next required edge, and a new UAV
is deployed. This problem can be modeled as a variant of
the Vehicle Routing Problem (VRP) with constraints on time,
energy, and sensor assignment.

We define the notations used throughout this paper as
follows:

• Lat(u), Lon(u): Latitude and longitude of vertex u.
• d(u, v): Euclidean distance between two vertices u and
v.

• N : Total number of UAVs used.
• Tlim: Maximum operating time per UAV.
• Ps, Pdh: Power consumption in service and deadhead

modes (W).
• Ssvc, Sdh: Service and deadhead speeds (m/s).
• Sensor(e): Sensor type required to service edge e.
• Sensors(u): Set of sensor types available on UAV u.
• Pdepot: Selected starting depot for each UAV (chosen

based on shortest distance to required edges).
• P (u, v): Shortest path between vertices u and v.
• Ts, Td: Time required for service mode and deadhead

traversal, respectively.
• Es, Ed: Energy consumed during servicing and deadhead

traversal, respectively.
The time and energy are modeled as follows. Service time

and energy for a required edge of length d:

Ts =
d

Ssvc
, Es =

Ps · d
3600 · Ssvc

Deadhead time and energy:

Td =
d

Sdh
, Ed =

Pdh · d
3600 · Sdh

Total energy per UAV:

Etotal =
∑

e∈Ereq

Es(e) +
∑

e∈Enonreq

Ed(e)

IV. ALGORITHMS

This work evaluates two UAV coverage algorithms address-
ing the line coverage problem in sensor-diverse environments:
the Greedy Algorithm with Diverse Sensors and the UAVs with
Multiple Sensors algorithm. Both approaches aim to maximize
coverage efficiency and minimize operational costs, but differ
significantly in how sensor assignments influence UAV path
planning.

Focus of this Study. Two coverage strategies are compared:
1) Greedy with diverse sensors: Each UAV carries one

sensor type, assigned to edges it can service.
2) Multiple Sensors: Each UAV carries all required sensors,

enabling it to cover all edges without reassignment,
potentially reducing fleet size.

For depot selection in both algorithms, the UAVs choose
the closest depot using Dijkstra’s algorithm to compute the
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shortest path between each depot and the nearest required
edge. The process considers both required and non-required
edges as potential travel paths. After evaluating all depots, the
UAV departs from the one with the minimum travel distance,
thereby reducing unnecessary deadheading and optimizing
energy usage.

Greedy Algorithm Explanation with Example:
In the Greedy algorithm, they service edges based on

proximity while checking if they have the correct sensor for
each edge. The random assignment of sensors to the required
edges still applies here, meaning each UAV can only service an
edge if it has the corresponding sensor. After departing from
the depot, each UAV dynamically chooses the closest required
edge. However, it will only service an edge if it has the correct
sensor type. For example, if the nearest edge requires a camera
sensor, the UAV must have a camera sensor to service it. If the
UAV does not have the necessary sensor, it will continue to
search for the closest required edge it can service or deadhead
to another edge.

The UAVs continue servicing edges based on proximity and
sensor capability until they either run out of time limit or all
required edges are serviced. The non-required edges are still
used for deadheading between required edges. Once a UAV
runs out of time or finishes its assigned edges, it returns to
the depot. In this algorithm, the UAVs have more freedom to
choose edges, but they must still meet the sensor requirements
for each edge.
In Figure 1, the Greedy algorithm, UAVs cover required edges
based on sensor type by dynamically choosing the closest
serviceable edge. For example, with 16 edges (7 required),
edges 6–10 may need a camera sensor while edges 5–6
require a LiDAR sensor. The UAVs start from the nearest
depot, which is depot 10 in this case. A UAV with a camera
sensor will first cover edge 10–6. After servicing the edge, it
checks its remaining time: if sufficient, it proceeds to the next
closest required edge it can service; otherwise, it returns to
the depot using a deadhead path (non-required edges), such
as 6 → 7 → 11 → 10. UAVs move freely across the map,
covering the nearest required edge that matches their sensor
capability. Dijkstra’s algorithm determines the shortest path
to each required edge, and UAVs continue until the time
constraint is reached.

Fig. 1: Map 4 × 4 - Greedy

A. Greedy Algorithm with Diverse Sensors

In the Greedy algorithm, each UAV dynamically selects the
next closest required edge based on proximity, provided it has
the correct sensor for that edge. Sensors are assigned randomly
to required edges at the start of the mission. A UAV can only
service an edge if it possesses the corresponding sensor type.
For example, if the nearest edge requires a LiDAR sensor
but the UAV is equipped with a thermal sensor, it will skip
that edge and search for the next closest edge it can service.
The UAV continues this selection process until it reaches its
maximum operational time limit, after which it returns to the
depot.

Non-required edges are occasionally used for deadheading
to reach the next required edge, ensuring operational conti-
nuity. This approach is simple and flexible, but may lead to
inefficient coverage if sensor assignments limit UAV access to
nearby edges, causing additional deadheading and unbalanced
workload distribution among UAVs.

Algorithm 1 UAV Coverage Greedy Algorithm
Input: V, G, Pdepot, Tlim, Ssvc, Sdh, Esvc, Edh
Output: NUAVs,Ecovered

Definitions:
V : Set of vertices in the graph
G: Graph structure with required and non-required edges
Pdepot: Starting depot for all UAVs
NUAVs: Total number of UAVs used
Ecovered: Set of all covered edges

Initialize Ecovered ← ∅, NUAVs ← 0
Group required edges by sensor type: Esensor ← GROUPEDGESBYSEN-
SOR(G)
for all Stype, E ∈ Esensor do

while E contains uncovered edges do
Create a new UAV u for Stype with starting position Pdepot
NUAVs ← NUAVs + 1
while u is active and Tlim is not exceeded do

Determine the closest uncovered edge eclosest ∈ E
if eclosest = ∅ or u cannot return to Pdepot after servicing eclosest

then
Break

end if
if u is not at the start of eclosest then

Perform deadhead traversal to move UAV to eclosest.start
Update UAV’s time, energy, and position for deadhead

traversal
end if
Service eclosest: Add eclosest to Ecovered
Remove eclosest from E
Update UAV’s position, time, and energy for servicing eclosest
if UAV runs out of time or energy then

Mark u as inactive and Break
end if

end while
Return u to Pdepot using deadhead traversal if not already at depot

end while
end for
if any required edges remain uncovered then

for all remaining uncovered edges e ∈ Greq do
Create a new UAV to cover e
Add e to Ecovered
NUAVs ← NUAVs + 1

end for
end if
return NUAVs, Ecovered
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B. UAVs with Multiple Sensors

In the UAVs with Multiple Sensors algorithm, each UAV
is equipped with all required sensor types, removing the
constraints present in the Greedy approach. This capability
allows UAVs to service any required edge regardless of
the sensor type needed, eliminating inefficiencies caused by
sensor mismatches. After departing from the closest depot
(determined by Dijkstra’s algorithm), each UAV services the
nearest required edge based purely on proximity and remain-
ing operational time. Since there are no sensor restrictions,
UAVs do not need to bypass edges, reducing deadheading
and improving overall mission efficiency. Non-required edges
may still be used strategically for travel between required
edges. UAVs operate until they reach the maximum time
limit, ensuring full utilization of available operational capacity
before returning to the depot. While this approach increases
energy consumption per UAV due to the heavier payload of
multiple sensors, it significantly reduces the total number of
UAVs required, balances workload distribution, and shortens
mission completion time. It is especially effective in scenarios
with varied sensor requirements and dispersed coverage needs.

Algorithm 2 UAVs with Multiple Sensors Algorithm
Input: V, G, D, Tlim, Ssvc, Sdh, Esvc, Edh
Output: NUAVs,Udetails

Definitions:
V : Set of vertices in the graph
G: Graph with required and non-required edges
D: Starting depot for all UAVs
NUAVs: Total UAVs used
Ereq: Set of required edges to cover
Udetails: UAV operations (paths, energy, time)

Initialize Ecovered ← ∅, NUAVs ← 0
while Ereq ̸= ∅ do

Create new UAV u with all sensor types
Add u to UAV list; NUAVs ← NUAVs + 1
while u is active and Ereq ̸= ∅ do

Eclosest ← None; dmin ← ∞
for all e ∈ Ereq do

Compute distance d from UAV to estart
if d < dmin then

Eclosest ← e, dmin ← d
end if

end for
if Eclosest = None or UAV cannot return to D after servicing

Eclosest then
Mark UAV u as inactive and break

end if
if UAV is not at Eclosest.start then

Perform deadhead traversal to Eclosest.start
Update UAV’s position, time, and energy in Udetails

end if
Cover Eclosest:
Add Eclosest to Ecovered, Ecovered req
Remove Eclosest from Ereq
Update UAV’s position, time, and energy in Udetails

end while
if UAV has remaining time and energy then

Return UAV to D via deadhead traversal
Update UAV’s position, time, and energy in Udetails

end if
end while
return NUAVs, Udetails

V. EVALUATION

In this section, we evaluate the performance of the two
proposed algorithms—Greedy and UAV with multiple sen-
sors—by analyzing their efficiency, energy consumption, and
coverage capabilities in line coverage tasks. Both algorithms

were rigorously tested under time constraints, ensuring com-
plete coverage of required edges across various urban envi-
ronments.

The Greedy approach provided flexible edge traversal strate-
gies to maximize coverage within the UAVs’ operational lim-
its. In contrast, the multiple-sensors algorithm demonstrated
versatility by equipping UAVs with diverse sensor capabilities,
enabling multi-purpose tasks and reducing the number of
UAVs needed.

Each algorithm was tested using real-world city datasets,
including New York and other representative cities, to provide
diverse and comprehensive insights. The evaluation considered
key performance metrics such as UAV count, energy consump-
tion, coverage efficiency, and cost-effectiveness.

A. Methodology

The methodology focuses on comparing the performance
of the Greedy algorithm and the UAV with multiple sensors
algorithm in covering required edges within urban road net-
works. Both algorithms were evaluated using key performance
metrics such as edge coverage, energy consumption, and UAV
count. Simulations were designed under realistic conditions,
where UAVs began from a depot, covered assigned edges, and
returned to the depot before their time limits were depleted.

The Greedy algorithm prioritizes covering edges based on
immediate cost-effectiveness, aiming to maximize coverage
with minimal UAV deployment. The UAV with multiple
sensors algorithm, in contrast, equips UAVs with diverse
sensor capabilities (RGB, radar, infrared, LiDAR, ultrasonic),
enabling a single UAV to perform multiple sensing tasks
simultaneously, thus reducing the overall UAV count.

B. Line Coverage Dataset

The Line Coverage dataset, developed by the University
of North Carolina at Charlotte’s Robotics Group, is a col-
lection of urban road networks derived from OpenStreetMap
and released under the Open Database License (ODbL). It
is designed to support research on line coverage problems,
especially in applications involving Unmanned Aerial Vehicles
(UAVs). The dataset captures the structural diversity of real
cities, making it valuable for evaluating algorithm performance
under realistic conditions.

The table represents key metrics for the urban road networks
of five cities, Istanbul, Paris, New York, London, and Tehran,
extracted from the Line Coverage dataset. These cities were
chosen to provide diverse network structures and complexity
levels, enabling comprehensive evaluation of UAV deployment
strategies in real-world scenarios. The metrics include the
number of nodes, required edges, non-required edges, total
network length, and the number of connected components
for each city, offering insights into the characteristics of their
respective road networks.

These statistics highlight that Paris and Istanbul exhibit the
densest and most complex road networks due to their high
number of nodes and edges. In contrast, London shows the
smallest network length, suggesting a more compact structure.
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TABLE I: City’s Information

City No. of Nodes No. of Required Edges No. of Non-Required Edges Length of Network (m) No. of Connected Components

Istanbul 430 543 92235 26153.1 2

Paris 452 494 101926 12138.9 1

New York 379 402 71631 11594.2 1

London 340 352 57630 5122.6 1

Tehran 394 423 77421 13353.8 2

The presence of two connected components in Istanbul and
Tehran introduces additional challenges, as UAV coverage
strategies must account for disjoint sub-networks when plan-
ning efficient routes.

C. Simulation Results and Analysis

The simulations analyzed UAV performance using prede-
fined parameters, The mission parameters are set as: Ssvc = 5
m/s, Sdh = 8 m/s, Tlim = 1800 s, Ps = 130 W, Pdh = 195
W , reflecting realistic UAV operations similar to commercial
drones such as the DJI Phantom 4 [2] [3]. Energy consumption
was computed as the product of power and time, converted into
watt-hours (Wh).

To ensure comprehensive analysis, the simulation considers
required and non-required edges, assigning service costs for
required edges and deadhead costs for non-required travel. The
energy consumed was calculated as the product of power and
time, converted to watt-hours (Wh) for each operational mode.
The algorithms were evaluated on diverse city datasets, each
containing unique edge distributions, to test the adaptability
and scalability of the approaches. The Dijkstra algorithm was
used for pathfinding, enabling UAVs to follow the shortest
routes to reduce unnecessary travel.

These simulation settings provide a consistent framework
for comparing the Greedy and multiple-sensors algorithms,
allowing for meaningful analysis of energy consumption, UAV
count, and overall efficiency.

The results are summarized in Table II and Figures 2
and 3. These highlight that the multiple-sensors algorithm
consistently reduced the number of UAVs required while
maintaining efficient coverage, albeit with slightly higher per-
UAV energy usage due to extended mission times. The Greedy
algorithm, while simpler, required more UAVs to achieve
complete coverage, but distributed the workload more evenly
among them.

Table II summarizes the costs associated with UAVs and
sensors for two algorithms: Greedy and UAV with Multiple
Sensors. Based on recent data from the Amazon website, each
UAV is assumed to be a DJI Phantom 4, priced at $1300. In
the Greedy algorithm, a total of 5 UAVs are required, leading
to a UAV cost of $6500. The associated sensor cost amounts
to $65,000, resulting in the Greedy algorithm achieving the
lowest total cost of $71,500.

In contrast, the UAV with Multiple Sensors algorithm min-
imizes the number of UAVs required to just 2 units, reducing
the UAV cost to $2600. However, this advantage is offset by a
substantial increase in sensor costs to $130,000, as each UAV
must simultaneously carry all sensor types. This configuration

drives the total cost up to $132,600, making it the most
expensive option despite the smaller fleet size.

It is worth noting that while the DJI Phantom 4 may not
be practical for carrying multiple sensors simultaneously, the
simulation results suggest that even if replaced by a heavier-
duty UAV such as the Freefly Alta X, priced at approximately
$15,000, the UAV with Multiple Sensors algorithm would still
remain the most expensive approach due to the combined UAV
and sensor costs. This highlights the trade-off between mini-
mizing UAV fleet size and incurring higher sensor integration
costs.

Figure 2 illustrates the total energy consumption of UAVs
for each algorithm as the number of sensors per UAV in-
creases, specifically for the New York City dataset. The
Greedy algorithm exhibits noticeably higher energy consump-
tion compared to the UAV with Multiple Sensors algorithm.
This elevated energy usage in the Greedy approach likely
results from its less optimized route selection, which can lead
to longer travel paths and inefficient coverage. Although it
performs better than the most inefficient strategies, the Greedy
algorithm still requires substantial energy across all sensor
configurations, indicating limitations in its adaptability as the
sensor load increases.

In contrast, the UAV with Multiple Sensors algorithm con-
sistently demonstrates superior energy efficiency regardless of
the number of sensors installed. Its ability to integrate multiple
sensing tasks within a single flight path minimizes redundant
travel and reduces overall energy demand. This efficiency
becomes especially clear as the number of sensors increases,
where other algorithms would typically experience escalating
energy costs. These results suggest that the UAV with Multiple
Sensors algorithm not only leverages sensor availability more
effectively but also offers a scalable solution for energy-
constrained UAV operations in complex urban environments
such as New York City.

Figure 3 presents the total energy consumption of two UAV
algorithms—Greedy and UAV with Multiple Sensors—across
five urban datasets: Istanbul, London, New York, Paris, and
Tehran. The Greedy algorithm demonstrates moderate perfor-
mance but still results in substantial energy usage, likely due
to less optimized route selection. In contrast, the UAV with
Multiple Sensors algorithm consistently achieves the lowest
energy consumption across all cities and remains efficient even
as the number of sensors per UAV increases. This highlights
its ability to leverage multiple sensors on a single UAV to
minimize travel costs while fulfilling coverage requirements,
underscoring its advantage for energy-constrained UAV oper-
ations across diverse urban environments. It should be noted
that this evaluation assumes fixed sensor configurations and
static mission settings. An important extension for future work
is to incorporate dynamic mission scenarios and adaptive
payload strategies, where UAVs can reconfigure their sensing
capabilities in real time to better match changing requirements.
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TABLE II: Costs of Sensors and UAVs

Algorithm UAVs Used Sensor Usage Sensor Cost ($) UAV Cost ($) Total Cost ($) Lowest Cost

Greedy 5 lidar (1), ultrasonic (1),
rgb camera (1), infrared

(1), radar (1)

65,000 6,500 71,500 True

Multiple Sensors 2 rgb camera (2),
ultrasonic (2), radar (2),

lidar (2), infrared (2)

130,000 2,600 132,600 False

Fig. 2: New York City

Fig. 3: Five Different Cities

VI. CONCLUSION

The findings highlight the critical trade-offs between UAV
count, energy consumption, and operational cost in solving the
line coverage problem. The Greedy algorithm demonstrates
an effective balance between cost and efficiency, making it
suitable for scenarios where both performance and resource
usage are equally important. By assigning each UAV a single
sensor and dynamically selecting compatible edges, it mini-
mizes equipment cost while maintaining operational flexibility.
In contrast, the Multiple Sensors approach reduces the overall
fleet size by equipping each UAV with all required sensors,
enabling them to perform diverse tasks without assignment
mismatches. This significantly improves coverage efficiency
and reduces idle time, but comes at the cost of higher energy
demands and increased sensor-related expenses.

Together, these strategies establish a scalable framework for
UAV deployment that can be adapted to diverse environments
and mission priorities. They offer practical guidance for real-
world applications such as urban planning, disaster response,
and smart city operations. By optimizing UAV allocation and

utilization, this work contributes to the development of more
efficient, flexible, and sustainable aerial coverage solutions.
Future research will extend this framework to dynamic mission
scenarios and adaptive payload strategies, where UAVs recon-
figure sensors in real time. These directions would improve
robustness and expand applicability to disaster response and
other time-varying environments.
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