TD-ORDERER: Transaction Dependency Orderer

Kyuin Jhi
dept. of Computer Science and Engineering
Incheon National University
Incheon, Republic of Korea
hnn991206@inu.ac.kr

Abstract— As blockchain networks scale, ensuring efficient
and fair transaction processing becomes increasingly
challenging. Existing systems like Hyperledger Fabric rely on a
centralized orderer that lacks full knowledge of transaction
intent, leading to failures and unfair execution. We propose a
transaction ordering system that replaces or complements the
orderer in Hyperledger Fabric. Our system analyzes the
internal intent of transactions to minimize conflicts, provides
early feedback on likely failures, and considers user fairness
during ordering. This approach reduces transaction failure
rates and mitigates strategic behaviors, improving both system
efficiency and user experience in permissioned blockchain
environments.

Keywords—Blockchain, Hyperledger fabric, Transaction.

1. INTRODUCTION

Blockchain systems operate in a distributed environment
where each node maintains a consistent copy of the ledger.
As the number of nodes increases, the time required for
consensus and synchronization grows, leading to scalability
challenges. To address this, various blockchain platforms
have introduced architectural innovations to improve
scalability.

Hyperledger Fabric [1] takes a different approach
compared to traditional public blockchains by introducing
an orderer component that determines the sequence of
transactions. Transactions sent by users are received by the
orderer, ordered by arrival time, and then packaged into
blocks. These blocks are distributed to peer nodes,
which independently ~ validate each transaction for
correctness. This architecture follows an order-execute-
validate model, which improves throughput and supports
scalability across large networks.

However, this structure also presents several issues. In
particular, the actual effects of a transaction—such as which
keys are read or written—are not fully known until the
validation phase at the peer nodes. As a result, the orderer
organizes transactions without complete knowledge of their
intent or potential conflicts. Although this design improves
performance, it opens the door to front-running attacks [2],
where malicious users may infer the purpose of a
transaction—based on metadata or endorsement requests—

and submit conflicting transactions that reach the orderer first.

In such cases, the original transaction may be invalidated,
leading to reduced user satisfaction and concerns about
fairness.

To address these challenges, we propose a transaction
ordering system designed to replace the existing orderer in
Hyperledger Fabric. First, it analyzes the internal intent of

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Gi Seok Park
dept. of Computer Science and Engineering
Incheon National University
Incheon, Republic of Korea
gspark@inu.ac.kr

each transaction to minimize conflicts and reduce the
likelihood of failures. Second, it improves user experience by
providing early feedback for transactions that are predicted to
fail. Third, to ensure fairness among users, the system
monitors transaction outcomes and adjusts the ordering
process to prevent any participant from consistently gaining
an advantage due to network conditions or behavioral
patterns. This approach aims to enhance both the efficiency
and fairness of transaction processing.

II. PROPOSED SYSTEM

Fig.1 illustrates the overall system architecture, which
consists of three main components: Kafka [3], Watchdog [4],
and TD-Orderer. These components collaboratively provide
a conflict-aware and fairness-preserving ordering service for
the Hyperledger Fabric network. Kafka serves as a distributed
message queue that receives continuous streams of
transactions from Fabric peers. It decouples transaction
submission from ordering by first collecting transactions in
its input queue, ensuring smooth ingestion without blocking
the ordering logic. The TD-Orderer replaces Fabric’s default
ordering service and extends the RWSet structure with
additional metadata such as the transaction invoker,
transaction type, and urgency level. This urgency field
enables prioritization of time-critical operations, such as
certain financial transactions.

Hyperledger Fabric

t Kafka

e S

[4)
a
©
% 1 a8 1
[C)
6 a
|

NPUT

)

]

I_|

Transaction data Topological sorting l
User A pr, - 4
Write K2 El T j

(¢l

User B
Read K3

vk b e P o

Read K2 \\ j/
: (6] (e]
TD-Orderer

Figl. System Architecture

ICTC 2025

Upon receiving batches of transactions from Kafka, the
TD-Orderer analyzes overlaps in read and write sets to
construct a dependency graph. A directed edge is added
whenever one transaction writes a key that another reads,
indicating a potential read-after-write conflict. The graph is
then processed using topological sorting to produce an
execution order that minimizes conflicts. This conflict-aware
ordering ensures that no transaction within a block reads keys
modified by earlier transactions in the same block, thereby
reducing abort rates.

To illustrate the benefit of conflict-aware ordering,
consider three transactions: T1 reads key A and writes key B;
T2 reads key B and writes key C; T3 reads key C and writes
key A. Executing them in the original sequence (T1 — T2 —
T3) creates a cyclic dependency that leads to aborts. However,
by reordering them as (T3 — T1 — T2), the system breaks
this cycle, ensuring conflict-free execution within the block.
This example highlights how the proposed ordering method
effectively reduces abort rates and enhances transaction
throughput.

Despite these measures, some transactions may still fail
due to dynamic conflicts. Such transactions are moved to the
abort queue, where the Watchdog component monitors them
continuously. Watchdog records user-specific failure rates
and stores this information in a distributed, tamper-resistant
manner to uphold fairness. High abort rates influence future
ordering decisions by deprioritizing transactions from certain
users or avoiding scheduling conflicting transactions together.
These fairness controls prevent resource monopolization and
ensure equitable network access.

III. EXPERIMENTAL RESULTS

A. Setup

The system is partially deployed in a Docker environment.
Kafka is configured with three brokers and three ZooKeeper
nodes, while Watchdog consists of validation nodes and
consensus nodes responsible for recording transaction
failures and maintaining consistency through distributed
consensus. In contrast, the core component, TD-Orderer, runs
locally alongside a modified Hyperledger Fabric, replacing
the default ordering service. System performance is evaluated
using Hyperledger Caliper [5], focusing on metrics such as
latency, transaction success rate. The Smallbank scenario was
used for testing, with a total of 100 keys. Zipf’s law was
applied with a parameter of 1.15 to simulate key access
distribution.

B. Results

The experiment lasted for 30 seconds, comparing the existing
Fabric system with the proposed system. Five users with
varying network conditions each submitted 200 transactions
per second. Among these, 10% were read-only transactions,
while the remaining 90% were designed to potentially cause
conflicts.

Fig. 2 shows the transaction abort rates per user. While
Fabric exhibits varying abort rates depending on users'
network conditions, the proposed system achieves fairer
transaction processing by considering user failure rates. This
approach helps prevent intentional attacks on specific users’
transactions or prioritization of one’s own transactions.
Additionally, Fig. 3 presents the standard deviation and

345

1.00

mUserA mUserB mUserC mUserD mUserE

I
2
by

Transaction Aborting Rate
S
74
(=]

S
N
G

0.00

Fabric

Proposed

Fig2. Transaction aborting rate per user

250

200

Standard Deviation
Total Abroting Rate

Fabric Proposed

Fig3. Standard deviation and Total Aborting rate

overall transaction abort rates. Fabric’s standard deviation
was 219, whereas the proposed system achieved a much
lower value of 41, demonstrating significantly improved
fairness. By analyzing dependencies between transactions,
the proposed system also reduces the overall abort rate, as
confirmed by the experimental results.

IV.CONCLUSION

This paper proposes a conflict-aware and fairness-preserving
ordering service for Hyperledger Fabric by combining Kafka,
TD-Orderer, and Watchdog. The system reduces transaction
aborts through dependency analysis and prioritizes fairness
by monitoring user failure rates. Experiments using the
Smallbank scenario show improved throughput, fairness, and
lower abort rates compared to Fabric’s default ordering. This
architecture enhances transaction validity and equitable
access in permissioned blockchains, providing a practical
improvement without sacrificing performance.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) Grant funded by the Korea
Government (MSIT) under Grant RS-2023-00212931

REFERENCES

Hyperledger Fabric Documentation. Available: https://hyperledger-
fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html

(1

Misra and A. D. Kshemkalyani, “Towards Stronger Blockchains:
Security Against Front-Running Attacks,” in Networked Systems.
NETYS 2024, A. Bouajjani and A. Mostefaoui, Eds., LNCS, vol.
14484, pp. 171-187, Springer, Cham, 2024.

Apache Kafka (2024). Available: https://kafka.apache.org

G. S. Park and H. Song, “Watchdog: Network-aware consensus
protocol for enhancing scalability of public blockchains,” /EEE
Internet of Things Journal, vol. 11, no. 11, pp. 20138-20151, June
2024.

Hyperledger Caliper [Online].
https://github.com/hyperledger-caliper/caliper

(2]

[5] Available:

