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Abstract—Security is a critical function for protecting target
individuals from potential threats. In particular, safeguarding
officials such as politicians requires significant resources to ensure
their safety. In this paper, we investigate a real-time video
surveillance system for safeguarding and develop an accurate
and efficient human behavior detection method. After defining
four target behaviors associated with potential threats, we con-
struct a video dataset for these behaviors. Using sequences of
estimated human poses, we then implement a lightweight human
behavior detection method. Specifically, our approach combines
convolutional layers with a Transformer encoder to capture both
local and global features of human behavior. Experimental results
demonstrate that our network achieves an average accuracy of
96.84% with an inference time of 2.1 milliseconds. We expect
that the proposed method will significantly reduce the operational
cost of video surveillance while maintaining effective detection of
potential security threats.

Index Terms—Human behavior detection, video surveillance,
security, human pose

I. INTRODUCTION

Understanding human behavior from video has made re-
markable progress in computer vision technologies. Automatic
detection of human behavior in video surveillance not only
reduces operational costs but also provides faster and more
accurate performance compared to traditional human-based
monitoring [1]-[3]. Such intelligent surveillance systems can
also be applied to security scenarios to continuously monitor
the surroundings of a target individual to protect and identify
persons who may have potential threats to the protected target.

In this paper, we investigate the requirements of a real-
time video surveillance system for security, construct the cor-
responding dataset, and develop a human behavior detection
method to rapidly recognize potential threats in video. We
specifically defined four target human behaviors and collected
a corresponding video dataset. We extracted human-related
information such as bounding boxes and human poses and
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utilized this information to implement an efficient behavior
detection algorithm with a simple yet effective neural network
architecture and a data augmentation strategy. Our proposed
network combines convolutional layers with a Transformer
encoder to capture both local and global features from se-
quences of human poses. Additionally, we apply a data aug-
mentation technique to enhance robustness against human pose
estimation errors. As a result, the proposed system achieves
approximately 96.7% mAP with an inference latency of 2
milliseconds, making it suitable for real-time surveillance
applications in security scenarios.

II. ENVIRONMENT SETTINGS

We begin by analyzing the requirements of a video surveil-
lance system for security applications. In Section II-A, we
investigate the system and performance specifications neces-
sary to achieve this goal. Based on these requirements, we
define the target human behaviors and collect data to develop
a behavior detection network. Section II-B describes the details
of the data collection process.

A. Video Surveillance System for Security

In this study, we develop a human behavior detection
method and integrate it into a video surveillance system for
security applications. The system is designed for location-
independent deployment and enables the monitoring of mul-
tiple individuals by analyzing video streams transmitted to a
central command center. Considering various practical require-
ments, the proposed system satisfies the following specifica-
tions:

e The video surveillance system is designed for flexible
deployment, utilizing camera sensors from mobile de-
vices rather than relying on fixed CCTV installations. It
supports mobile setup and wireless video transmission.

o The system assumes a monitoring scenario where a
security operator observes multiple screens. Accordingly,
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TABLE I
SPECIFICATIONS OF THE DATA COLLECTION ENVIRONMENT

TABLE II
SUB-SCENARIOS DEFINED FOR EACH BEHAVIOR CLASS

Details

Galaxy S24

15° (indoor), 45° (indoor), 85° (outdoor)
8 locations including indoor and outdoor

Item

Camera
Camera Angles
Shooting Locations

Body Types Female / Male

Clothing With / Without padded jacket
Number of People 1-4

Orientation 0° to 360°

Number of Participants | 9 in total

it aims to detect behaviors unrelated to the main event or
indicative of potential pre-incident activities.

¢ To minimize occlusion among individuals, cameras are
installed at least two meters above the ground level.

o The system includes not only the proposed behavior
detection algorithm but also a comprehensive analysis
framework. Therefore, person detection, tracking, and
pose estimation modules may be executed as preliminary
steps. Given the computational load of these components,
the behavior detection algorithm is required to operate
within five milliseconds per frame to ensure real-time
performance.

o The system is designed to be robust against inaccuracies
in human pose estimation that may occur due to occlu-
sions between individuals in a crowd.

B. Dataset Construction

1) Target behavior for security scenario: When we con-
sider existing datasets such as NTU RGB + D [4] and RWF-
2000 [5], they are not suitable for detecting potential threats in
our defined security applications. Therefore, we constructed a
new dataset to train and evaluate the human behavior detection
algorithm. Based on our preliminary studies investigating the
requirements in real-world security settings, we defined four
target human behaviors to identify potential security threats in
video surveillance. The four defined behaviors are as follows:
Throw, Protest, Run, and Look around. Throw behavior is a
direct threat to security, while the others are considered pre-
cursor behaviors that may indicate a potential threat. To ensure
the stability of human behavior detection, all other unrelated
behaviors are categorized as Idle behaviors. Therefore, we
defined five behavior categories in this study.

2) Data collection environment: We defined our data col-
lection environment as summarized in Table I. To ensure the
diversity of the dataset, seven key attributes were considered.
The dataset includes variations in the following aspects: three
camera angles, eight different locations encompassing both
indoor and outdoor environments, gender (male/female), pres-
ence or absence of heavy winter clothing (to represent season-
independent detection), number of people (ranging from 1
to 4), and orientation of individuals. Heavy winter clothing
was considered because it can influence the structure of
the estimated human pose. In addition, as shown in Table
II, various sub-scenarios were defined within each behavior

Behavior Class | Sub-scenarios

Throw ¢ Throwing while standing
» Throwing while sitting
* Throwing while taking out an object
Protest * Protesting with both arms raised aggressively
* Protesting with one arm holding a picket
Run * Sprinting at full speed

Look around * Looking around while standing

* Looking around while sitting

* Looking around while talking on the phone
* Looking around while writing something

* Looking around while taking out an object

TABLE III
QUANTITY OF VIDEO SAMPLES FOR EACH BEHAVIOR CLASS IN THE
COLLECTED DATASET

Class Label | Behavior Name | Count
0 Idle 1023
1 Throw 401
2 Protest 117
3 Run 296
4 Look around 457

class to enable more accurate learning of diverse patterns
of target behaviors that may occur in real-world surveillance
environments.

3) Raw data capturing: To maximize efficiency, we de-
veloped detailed scripts for each class based on various
environmental factors such as gender, number of people, and
camera angles. Each behavior was performed repeatedly under
diverse settings and conditions to ensure the model’s ability
to generalize across a wide range of real-world situations.

The raw data was categorized into five classes, from Class
0 to Class 4, corresponding to Idle, Throw, Protest, Run, and
Look around, respectively, as shown in Table III. A total of
2,294 video samples were collected, comprising 1,023 samples
for Idle, 401 for Throw, 117 for Protest, 296 for Run, and 457
for Look around. The relatively small number of samples in
the Protest class was due to preliminary experiments showing
that this behavior has distinctive characteristics that make
it clearly distinguishable from other classes. Specifically, in
contrast to the rapid motion of the Throw, Protest behavior is
more static and typically performed in place, which contributes
to more stable human detection and reduced motion blur in
video frames. The Idle class includes all behaviors that cannot
be categorized into the four predefined actions. For example,
standing, walking, and hand-waving are considered part of
the Idle class. Fig. 1 illustrates a sample of our dataset. The
test set was constructed by additionally recording 38 videos
featuring individuals not included in the training dataset.
Furthermore, to evaluate the generalization performance of
the model in more diverse environments, an additional 60
videos were collected from YouTube using keywords such as
protest, crowd, baseball, and running, which are related to the
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Fig. 2. Structure of the 1D-CNN + Transformer encoder model

experimental scenarios.

4) Dataset labeling: The recorded videos were manually
segmented to isolate the portion where the defined behaviors
occurred. Temporal segmentation was performed for the four
target classes, while segments that did not correspond to
any of these behaviors were labeled as Idle. This process
ensured a clear distinction between Idle and the other target
behaviors. To enhance the generalization capability of the
dataset, recordings were repeated under various conditions
as illustrated in Table II. Based on the raw videos, short
clips ranging from 2 to 7 seconds were extracted, centered
around the onset of each behavior, resulting in a total of 2,294
samples.

To track the pose of each individual and detect their be-
haviors, we utilized off-the-shelf algorithms for bounding box
and pose estimation. Specifically, we applied a bounding box
detector and tracker with [6] (i.e., ByteTrack) and a top-down
human pose estimator with [7] (i.e., PCT) to the curated video
clips in our dataset. Using estimated bounding boxes, identity
indices, and human poses, our system is able to continuously
monitor each person in the scene and analyze their behavior
over time.

III. HUMAN BEHAVIOR DETECTION NETWORK

Based on the dataset described in Section II-B, we de-
veloped a neural network that recognizes human behaviors
using sequences of human poses (i.e., a set of 2D coordinates
of human keypoints). Considering the requirements for real-
time operation and accurate behavior detection, we designed
a lightweight neural network architecture that leverages both
local and global features from pose sequences. We also applied
a data augmentation technique to ensure robust performance
under the instability of preceding human pose estimations.

A. Network Architecture

The human pose sequence is one of the primary sources
for understanding human behaviors. For fast estimation, short-
term changes in human pose can provide important cues.
However, relying solely on short-term features may lead to
unstable predictions, because they reflect only partial pose
changes rather than a holistic analysis. Therefore, in this study,
we design a human behavior detection network that considers
not only short-term changes but also long-term changes in
human pose.

The structure of the behavior detection model based on
ID-CNN and Transformer encoder, proposed in this study,
is illustrated in Fig. 2. Specifically, with 2D coordinates of
17 keypoints in n frames, H = {hg,hq,...,h,} € R?*34,
1D-convolutional Neural Network (CNN) layer Ejocar ex-
tracts local features from the H by sliding convolution
kernels along the temporal axis. Unlike traditional time-
series models such as Recurrent Neural Networks (RNN)
or Long Short-Term Memory networks (LSTM), the 1D-
CNN enables parallel processing of the entire input sequence,
leading to faster training — an important advantage for real-
time video surveillance scenarios. Then, the estimated local
features Z, € Reed-1engthx128 are input to the following The
Transformer encoder Egionhal to consider global information
to understand patterns of given behavior [8]. In Egiopal, self-
attention mechanism is utilized by using the input feature
itself as its query, key, and value and refining the input
latent Zy to Z € Rsea-lengthx128 Thig makes it effective
in modeling dependencies across the entire sequence, which
is particularly useful for recognizing behaviors that involve
changes in posture over multiple frames. The self-attention
mechanism in this block can be illustrated as:

Attention(Q, K, V') = softmax (QKT> v (1)
s en

where @, K,V = Zj and d is the dimension of key and
query.

Finally, as a classification head, a fully-connected layer Cjs
uses the refined latent feature to estimate probabilities of each
behavior category. In conclusion, the entire process of our
proposed network can be illustrated as:

ZO = Elocal(H> (2)
Z = Eglobal(Z0) (€)
R =Cus(P(2)) )

where P is global pooling and ReR® presents probabilities
of the four target behavior and Idle.

B. Data Augmentation for Robust Detection

According to the environment configured in this study,
the estimation of human pose becomes unstable due to par-
tial occlusions caused by other subjects or limited field of
view of the camera, as well as rapid movements [10], [11].
Some human keypoints may be missing, which causes a
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Fig. 3. Examples of keypoint drop for data augmentation

drop in performance in subsequent human behavior detection
algorithms. To build a robust situational awareness network
capable of operating reliably under degraded pose estimation
conditions, we developed a data augmentation technique that
simulates such challenging environments. For each frame, we
dropped the keypoints with probability FPy,.,,. When we set
Pyrop = 0.3, one to five keypoints were randomly selected
and their coordinates were set to (0, 0), indicating missing
keypoints. To preserve the structural information of human
pose, no more than five keypoints were dropped in each case.
Fig. 3 illustrates an example of data augmentation, in which
the right ear in the facial region has been removed. This may
occur depending on the orientation of the human head.

C. Training

Using the class label of the target behaviors and the one-hot
encoding result of our behavior detection network, we employ
a cross-entropy loss to train the entire network. This can be
formally expressed as :

c
Leg=—) yilog(Ry) )
i=1
where C is the number of classes,Ayi is the one-hot encoding
of ground-truth’s class label, and R is the detection result.

IV. EXPERIMENTS

In this section, we provide details of the experiments to
verify the effectiveness of our proposed methods. Section
IV-A describes the experimental setting for evaluation. Section
IV-C and Section IV-D present the experimental results in a
quantitative and a qualitative manner, respectively.

A. Experimental Setting

As described in Section II-B, the dataset collected in this
study consists of five behavior classes: Idle, Throw, Protest,
Run, and Look around, comprising 1,023, 401, 117, 296, and
457 samples, respectively, for a total of 2,294 sequences. To
more accurately evaluate the generalization performance of the
model, we applied a 5-fold cross-validation. In each iteration,
one fold was used for validation while the remaining four
were used for training. As a result, the model was trained
and evaluated five times with different training and validation
splits, and the final performance was calculated as the average
across all folds. For each fold, approximately 1,836 samples
were used for training and 458 samples for validation.

For performance comparison, we defined a baseline model
with a simple architecture consisting of a 1D convolutional

TABLE IV
EVALUATION RESULTS OF BASELINE AND OUR PROPOSED METHOD

Metric (unit) Baseline | Ours
Averaged Precision (%) 72.46 96.84
Inference time (ms) 0.838 2.114

Transformer Encoder Model Confusion Matrix

Baseline Model Confusion Matrix

Idle
Idle

Throw
Throw

Protest
Protest

True Label
True Label

Run

Lookaround
Lookaround

Protest Run
Predicted Label

(b) Ours

Protest Lookaround Idle Throw
Predicted Label

Throw

Lookaround

(a) Baseline

Fig. 4. Confusion matrices of evaluation result

layer followed by a gated recurrent unit (GRU), and compared
its detection performance with that of our proposed architec-
ture. As the evaluation metric, we measured the accuracy of
each network by using the predicted labels with the highest
probabilities at the final layer.

B. Implementation Details

The entire framework was developed using the PyTorch.
As we discussed in Section II-B4, a 34-dimensional vector
estimated by [7] was used as input and sequence length of
behavior is 16. The 1D-CNN consists of three convolutional
layers with a kernel size of 3 and padding of 1. Each layer
is followed by batch normalization and a ReLU activation
function. The output channels of the convolutional layers are
set to 64, 128, and 128, respectively. For the Transformer
Encoder, we used 8 heads and 128 latent channels. During
training, we adopted the Adam optimizer [12] with a fixed
learning rate of 3e-4. The model was trained for 100 epochs
on one NVIDIA RTX 3090 with a batch size of 8. To prevent
overfitting, we applied a dropout rate of 0.3 to both the
Transformer Encoder and the final features before the last
classification layer. The entire training time was approximately
2.5 hours for each validation.

C. Quantitative Evaluation

As Table IV illustrates, the mean accuracies of the baseline
and our proposed network were 72.46% and 96.84%, respec-
tively, in our experiments. Our proposed method outperformed
the baseline by using local and global information from pose
sequences. The inference time of the detection network in-
creased, but it still met the requirements discussed in Sec. II-A.
For in-depth analysis, we visualized a confusion matrix as
illustrated in Fig. 4. The baseline model had a particularly low
performance on the Idle class, which recorded only 61.37%.
This was likely due to the high similarity between Idle and
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(a) Running phase (b) Walking phase

Fig. 5. Behavior transition from running to walking

(b) Throwing phase

(a) Protesting phase

Fig. 6. Behavior transition from protest to throw

other behaviors, making them difficult to distinguish, as well
as the limitation of the GRU-based architecture that focuses
solely on local information. The Idle class was frequently
misclassified as Run (14.67%) and Look around (21.64%). In
contrast, the accuracy of the proposed Transformer encoder
model on the Idle class increased to 99.51%, and the Protest
and Throw classes also achieved high accuracies of 100% and
99.59%, respectively. These results indicate that using the self-
attention mechanism of the Transformer encoder with local
features estimated by 1D convolution effectively captures local
and global contextual information simultaneously, enabling
the model to distinguish fine-grained differences, thereby
achieving superior performance in behavior detection tasks.

D. Qualitative Evaluation

To evaluate the model’s ability to detect behavior transi-
tions, we tested it on video sequences containing continuous
shifts between multiple target behaviors, such as running to
walking and protesting followed by throwing. These composite
sequences were not explicitly included during training, yet
our proposed model accurately segmented and classified each
behavior within the sequence.

As shown in Fig. 5 and Fig. 6, the model successfully
identified the transition to Walking immediately following
a brief Running phase, and similarly detected a shift from
Protest to Throw within a single 7-second clip. In particular, in
the running to walking video, the subject is partially occluded
by a tree during the transition. Despite this occlusion and
the reduced apparent size of the subject in the frame, the
model maintained accurate detection performance, demonstrat-
ing robustness to partial visual obstruction and distant-object
scenarios.

In addition, the model showed resilience to keypoint noise
caused by scale reduction and motion blur, which often occur
when the subject moves rapidly or appears smaller in the
frame. These results suggest that the model has learned to
recognize transitions between temporally adjacent behaviors
by focusing on consistent pose dynamics, rather than relying

on fixed-duration patterns or isolated key-frame cues. This
ability to detect behavior transitions, even under occlusion and
pose instability, is crucial for real-world surveillance scenarios,
where human behaviors often unfold as continuous, context-
dependent sequences in visually challenging environments.

V. CONCLUSION

In this paper, we address the problem of human behavior
detection in video surveillance scenarios for security. We
analyzed the requirements of real-world security contexts and
constructed a dedicated dataset to support effective threat
monitoring. The proposed detection method demonstrates high
accuracy and stability by leveraging both local and global
information from human pose sequences. With an inference
time of around 2 milliseconds, the proposed network can
reliably detect target behaviors that may serve as cues for po-
tential threats, making it well-suited for real-time surveillance
applications.
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