Development of a path-following method combining AI and app*

Heonjong Yoo

Seonggon Choi

Jihwan Jeong

Wonseok Choi

Chungbuk National University Chungbuk National University Chungbuk National University Chungbuk National University Cheongju-si, Korea Cheongju-si, Korea 622061@chungbuk.ac.kr choisg@cbnu.ac.kr

Cheongju-si, Korea starwlghks7@chungbuk.ac.kr

Cheongju-si, Korea choiws@chungbuk.ac.kr

Abstract—The paper focuses on the incorporation of the existing state flow design into the AI and App for the path following in the solar plant location. Firstly, the mobile platform of the 4 wheel can be moved in the solar plant location where the destination is generated using artificial intelligence (AI) and the app. Secondly, the destination signal is sent to MATLAB and the mini version 4 wheel ranger 2 platform is moved based on AI and app information. The input v(t), w(t) to output x(t), y(t), h(t)are generated for the following generated path. At this point, the existing state flow design method is incorporated into switch block to select the optimal path for the designated destination.

Index Terms—Ranger mini version 2 mobile platform, Artificial intelligence, Destination number, Automatic gain

I. Introduction

The artificial intelligence method is collaborated with the control of the 4 mobile wheel platform in [1]-[4]. The 4 mobile wheel platform has been researched over years. To improve accuracy, the previous study is implemented for 4 wheel mobile platform in [5]-[15].

Taking advantage of the aforementioned method into account, this study proposes the design of the state flow method incorporated into the switch block and the automatic gain optimization during experimentation. Using the proposed method, artificial intelligence sends the destination data to MATLAB, and then automatic gain optimization is implemented to change the direction of the 4 wheel ranger mini version 2 platform.

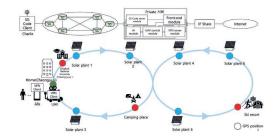


Fig. 1. The overall system architecture and experimental condition

Identify applicable funding agency here. If none, delete this.

II. THE EXPERIMENT OF THE 4 WHEEL MOBILE PLATFORM USING MATLAB/SIMULINK

To enable communication between the app and MAT-LAB, a TCP/IP server is opened in MATLAB, allowing data to be transferred from the app. The command $set \ param("data2/Gain", Gain = "data2")$ updates the Simulink model with new data during simulation. This enables the platform to follow a path from Scenario 1 to Scenario 2 during experimental implementation. When the user sends number 1 via TCP/IP, the 4 wheel mobile platform moves to position 1, corresponding to Solar Power Plant 1. Later, during the experiment, if the user sends the number 2 through the app, the platform moves to Solar Power Plant 2. The general scenario is illustrated in Fig. 1.

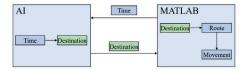


Fig. 2. The overall scenario for the path following of the specific destination

The mobile 4-wheel platform continuously moves during an infinite simulation. When the numbers 1, 2, or 3 are entered, the rotary switch in Fig. 4 updates according to the number received from the app and artificial intelligence.

III. METHOD OF OPENING MATLAB SERVER, SENDING A MESSAGE FROM ANDROID APP

The MATLAB server is launched to receive a specific number determined by the AI's preference. The aspect of the Android app is given in Fig. 5. The number specifies the destination of the solar panel. ? in the app specifies the inquiry to the AI(artificial intelligence), which is Python in our case. In MATLAB, the IP address and port number are specified in the code. The method of opening MATLAB server and getting

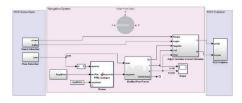


Fig. 3. The number based Simulink model

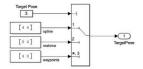


Fig. 4. The switch based on the way point preference

the preferrable number is shown in Appendix in terms of code in MATLAB.

IV. CONCLUSION

In the presentation, the state flow method is integrated within the switch block to determine the appropriate destination based on AI and App inputs. Utilizing this design along with the ROS network, a suitable path is generated, which the 4-wheel Ranger Mini mobile platform follows. The experiment and algorithm are implemented and demonstrated using MATLAB/Simulink and a ROS-enabled Ubuntu PC.

V. APPENDIX

port = 224; serverSocket = java.net.ServerSocket(port); fprintf('Waiting for client to connect...'); clientSocket = serverSocket.accept(); fprintf('Client connected'); inputStream = clientSocket.getInputStream(); outputStream = clientSocket.getOutputStream(); data = char([]); data = [data, inputStream.read()]; data2 = str2num(char(data)); fprintf('Received message= set_param("data2/Gain", Gain = "data2")

ACKNOWLEDGMENT

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. RS-2020-NR049604, 100 %).

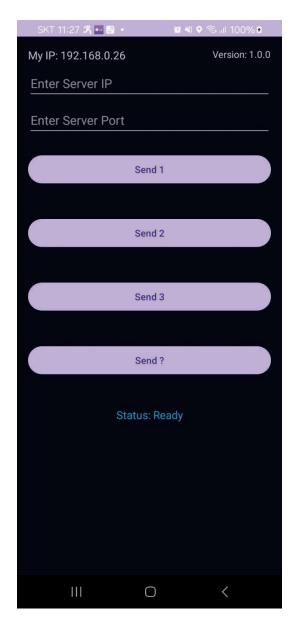


Fig. 5. The aspect of the android app

*Corresponding author: S.G. Choi (choisg@cbnu.ac.kr)

REFERENCES

- M. Szeremeta, and M. Szuster, Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels, Applied Sciences, 2022, 12, 1–21. https://www.mdpi.com/2076-3417/12/11/5322
- [2] G. Lin, T. Terakawa, K. Shinno, T. Inoue and M. Komori, RoMop: A New Type of Wheeled Mobile Platform Based on Rotating Locomotion, IEEE/ASME Transactions on Mechatronics, 2024, 29, 2510– 2520.https://ieeexplore.ieee.org/document/10339858
- [3] R. De Schaetzen, A. Sestini, Efficient Ground Vehicle Path Following in Game AI,IEEE Conference on Games, 2023, 2307, 2510– 2520.https://arxiv.org/abs/2307.03379
- [4] M. H. Hong, H. J. Yoo and S. G. Choi, Incorporation of Waypoint Following Logic into ROS Publish and Subscribe Mechanism, 26th International conference on Advanced Communication Technology (ICACT) 10 (2024), pp.373–375. https://ieeexplore.ieee.org/document/10471937

- [5] M. Kamezaki et. al., Dynamic Waypoint Navigation: Model-Based Adaptive Trajectory Planner for Human-Symbiotic Mobile Robots, IEEE Acc.,2022,8, 81546-81555. https://ieeexplore.ieee.org/document/9841573
- [6] S. Khan, K. Ahmad, M. Murad and I. Khan, Waypoint Navigation System Implementation via a Mobile Robot Using Global Positioning System(GPS) and Global System for Mobile Communications(GSM) Modems, International Journal of Computational Engineering Research, 2013,3, 9-54. https://www.academia.edu/79278414/
- [7] H. J. Yoo and S. G. Choi, Navigation Path Following Platform for a Greenhouse Shuttle Robot Using the State-flow Method, Mathematical Problems in Engineering, 2024,2024,1-16. https://onlinelibrary.wiley.com/doi/10.1155/2024/8810990
- [8] Y. Tong, H. Jing, B. Kuang, G. Wang, F. Liu and Z. Yang, Trajectory Tracking Control for Four-Wheel Independently Driven Electric Vehicle Based on Model Predictive Control and Sliding Model Control, 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), pp. 1–8, 2021.https://ieeexplore.ieee.org/document/9661227
- [9] J. Wang, T. Yan, Y. Bai, el. al., Assistance Quality Analysis and Robust Control of Electric Vehicle with Differential Drive Assisted Steering System, IEEE Access, 2020, 8, 136327–136339. https://ieeexplore.ieee.org/document/9145521
- [10] J. Chen, Z. Shuai, H. Zhang and W. Zhao, Path Following Control of Autonomous Four-Wheel-Independent-Drive Electric Vehicles via Second-Order Sliding Mode and Nonlinear Disturbance Observer Techniques, IEEE Transactions on Industrial Electronics, 2021,68, 2460–2469. https://ieeexplore.ieee.org/document/9005375
- [11] Y. Huang, H. Ding, and Y. Zhang, A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach, IEEE Transactions on Industrial Electronics, 2020, 67, 1376–1386. https://ieeexplore.ieee.org/document/8643096
- [12] S. S. Mousavi, M. Schukat and E. Howley, A Deep Reinforcement Learning: An Overview, Proceedings of SAI Intelligent Systems Conference (IntelliSys), pp. 426–440, 2017. https://arxiv.org/abs/1701.07274
- [13] Y. Cao, K. Ni, X. Jiang, T. Kuroiwa, H. Zhang, T. Kawaguchi, S. Hashimoto and W. Jiang, Path following for Autonomous Ground Vehicle Using DDPG Algorithm: A Reinforcement Learning Approach, Applied Science, 2023, 13, 6847. https://www.mdpi.com/2076-3417/13/11/6847
- [14] H. Yoo, S. Choi, Application of the Reinforcement Learning Method for the Mobile Robotics Simulator, Proceeding of IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 2024, 1–4. https://ieeexplore.ieee.org/abstract/document/10773896
- [15] H. Yoo, and S. Choi , Enhancing vehicle control: implementing a Lyapunov position controller for a four-wheel independent steering and driving system, Journal of Nonlinear and Convex Analysis, 2024, 25, 1105–1119. http://yokohamapublishers.jp/online2/opjnca/vol25/p1105.html