Accelerating CNN Inference on MCUs with
Quantized Early-Exit Networks

Gunju Park , Seungtae Hong, Jeong-Si Kim
Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
Emails : parkgj@etri.re.kr , sthong@etri.re.kr , sikimOO@etri.re.kr

Abstract—On-device AI on microcontrollers (MCUs) is
severely hampered by their limited memory and computational
resources. To address this, we propose a complete pipeline for
creating and deploying efficient, dynamic neural networks. Our
methodology features a mixed training strategy to stably attach
early-exit branches to a pretrained CNN backbone, followed
by INT8 post-training quantization (PTQ). We validated our
approach with TensorFlow-Lite on a host CPU using a Modified
MobileNetV2 architecture. The results demonstrate a clear and
controllable trade-off between latency and accuracy; we achieve
up to a 1.54x inference speedup compared to a standard
quantized model, with a peak SRAM usage of only 67KB. This
work confirms that quantized early-exit networks are a practical
and effective solution for accelerating inference on resource-
constrained devices.

Index Terms—Quantization, Lightweight CNN, Early Exit
Network

I. INTRODUCTION

The proliferation of low-power microcontrollers (MCUs)
has ignited the field of Tiny Machine Learning (TinyML), aim-
ing to embed intelligence directly onto edge devices [1]. This
on-device approach offers significant advantages, including
low latency, enhanced privacy, and connectivity independence.
However, a fundamental conflict exists between the ever-
growing size of deep neural networks and the severe resource
constraints of MCUs, which are limited to kilobytes of RAM
and milliwatts of power [1]. This “model-hardware gap”
presents the primary obstacle to realizing the full potential
of ubiquitous Al

To bridge this gap, static optimization techniques such
as architecting efficient networks like MobileNetV2 [2] and
applying model compression through INT8 quantization [3]
have become standard practice. While effective, these meth-
ods adhere to a static inference paradigm, where the entire
computational graph is executed for every input, regardless of
its complexity. This often leads to redundant computation for
simpler samples.

To address this inefficiency, we leverage dynamic infer-
ence through an Early-Exit mechanism [4], [5]. This strategy
augments a backbone network with intermediate classifiers,
allowing inference to terminate prematurely for inputs that
can be classified with high confidence at an early stage.
Consequently, the average computational cost and latency
are significantly reduced. Despite the promise of dynamic
networks, a streamlined methodology to effectively train,
quantize, and evaluate them for resource-constrained targets
is currently lacking. This paper introduces a practical pipeline
to fill this gap. Our main contributions are threefold:

1) A mixed training strategy (disjoint-then-joint) to ef-
fectively attach and fine-tune early-exit branches on a
pretrained backbone model.

A complete pipeline for applying post-training quanti-
zation (PTQ) to the entire multi-exit dynamic network
to make it MCU-friendly.

A comprehensive performance analysis using Tensor-
Flow Lite, quantifying the trade-offs between accuracy
and inference speedup.

2)

3)

Step2
Input E Mixed Training Strategy Step3 Steps
Step1 ' sta | i
- ge A Stage B Validate
Pretrained FP32 | ! . -
Branch ' Calibrate EarlvExit
Backbone . o . — s> y
(MobileNet V2) Attachment -H:’ Disjoint > Joint . ieq |All Branches|quon: [Network
e i | Adjustment Training |!eenet | For PTQ EENet
{ : (Freeze (Fine-tuining |! Pytorch (calibrate Pytorc| ‘
E%: —- E@: 1| Backbone, Entire P FP32) T odels, | INT®)
. ! Adjust EE Network) : calculate Deploy
Backbone Early Exit 1| Branches) | total gparams) EE Model
Pytorch Model Pytorch Model 1 i -
(FP32) (FP32) | ; EE TFLite Model
N e . (INT8)

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Fig. 1: Overview of the Proposed Pipeline

389

ICTC 2025

II. PROPOSED METHODS

Our objective is to transform a standard, pretrained FP32
CNN into a quantized, inference-efficient dynamic network
suitable for resource-constrained environments. The proposed
pipeline, illustrated in Fig. 1, consists of a mixed training
strategy followed by a post-training quantization stage.

Input iImg + Label
4

weight update
ForwardPass |« - —— —= -
I 1
v v v v 1
1
Branch Branch Branch Final |
Head1 Head3 Head3 outout |
Output Output Output p 1
1
]]] 1
Loss 1 Lo¥s 2 Lo3s 3 Loss%inal 1
| x L_W, ‘ | xL_W, | ‘ x L_W3 ‘ X L_Weinal |
[I I | .
v

- 1
WeightedLossSum | I

Back Propagation

Fig. 2: The joint training process where the total loss is a
weighted sum of losses from all intermediate branches and
the final output.

A. Mixed Training for Early-Exit Branches

Attaching new classification branches to a pretrained back-
bone, a process explored in post-trained early-exit networks
[6], can disrupt its well-learned features if done naively. To
ensure a stable and effective learning process, we adopt a
two-stage mixed training strategy that combines disjoint and
joint training regimes, a method proven effective for early-exit
models [7].

Stage A: Disjoint Training Initially, we freeze the weights
of the pretrained backbone and train only the newly attached
early-exit branches. This stage allows the branches to learn a
reasonable initial mapping from the backbone’s feature space
without causing catastrophic forgetting or instability in the
main network.

Stage B: Joint Training Once the branches are stabilized, we
unfreeze the entire network and fine-tune all weights—both the
backbone and the branches—end-to-end with a lower learning
rate. This joint training phase allows the backbone and the exit
branches to co-adapt, leading to a more holistic optimization
and maximizing the accuracy of each potential exit point
[7]. During this stage, the total loss for backpropagation is
calculated as a weighted sum of the individual losses from
each exit branch and the final output.

N
Liotat = Winat - Liinat + Y Wi - L, ()

n=1

Here, L,, is the loss from the n-th early-exit branch, L yinal
is the loss from the original final output, and W,, and W¢inal

are the corresponding scalar weights that control the influence
of each classifier. As illustrated in Fig. 2, this joint loss func-
tion ensures that the gradients from all classifiers contribute
to the update of the shared backbone parameters, encouraging
the network to learn feature representations that are beneficial
for all exit points.

B. Post-Training Quantization for Early Exits

To meet the strict memory and computational constraints
of MCUs, we apply INT8 post-training quantization to the
fully trained FP32 model. This process converts all floating-
point weights and activations to 8-bit integer representations,
which is critical for enabling fast, energy-efficient integer-only
arithmetic on target hardware [8]. During this stage, a small,
representative calibration dataset is used to determine the op-
timal quantization parameters (scale and zero-point) for every
tensor in the network, including those in the backbone and
each exit branch, thereby minimizing the accuracy degradation
that can result from the reduction in precision.

Input Img
(96x96x3)

_ __ Receptive Field
Re-Distributed

(48x48x8)

MBv2 Block 0 ~ 5

¥ (24x24x8)
[MBv2 Block 6]—>
(12x12x16)

Y

{ MBv2 Block 7 ~ 9

(12x12x16)

Y

[MBVZ Block 10 ~ 12]

§ (2x12x24)

[MBv2Block 13
(6x6x40)

[MBVZ Block 14 ~ 16]
(6x6x80)

Final Conv2D
(6x6x160)

[GAP +Classifier J«-- " %1 F

Classifier

(1x1xnum_classes)

(a) MobileNet V2 Early Exit Arch.

Branch Head
DW
1x1 Conv2D
8;?'25?) GAP H Classifier J

(b) Branch Head Arch Detail

% CalcThres = Logits margin op1-10p2 > Threshold yy,
%+ GAP = Global Average Pooling 2D

Fig. 3: MobileNetV2 Arch with Early-Exit Branches

390

III. EXPERIMENTS AND RESULTS

In this section, we present a comprehensive evaluation of
our proposed methodology. We aim to quantify the perfor-
mance gains of the quantized early-exit network against a
standard baseline and analyze the inherent trade-off between
inference speed and accuracy.

A. Experimental Setup

Model and Dataset: We use a MobileNetV?2 [2] architecture
augmented with three early-exit branches, as depicted in Fig.
3. The model is trained and evaluated on the Visual Wake
Words (VWW) dataset [9], a standard benchmark for TinyML
vision tasks.

Training and Evaluation: The model was trained in PyTorch,
with the final FP32 network achieving validation accuracies
of 79.27% (B1), 85.41% (B2), 87.32% (B3), and 87.65%
(Final Exit). For performance analysis, quantized models were
evaluated using the TensorFlow Lite (TFLite) interpreter on a
host CPU to measure relative inference latency and estimate
memory footprint.

Baseline Model: The baseline is a standard INT8 quantized
MobileNetV2 without early exits, which achieves 81.09% Top-
1 accuracy on the VWW dataset.

Early-Exit Threshold: The inference policy is controlled by
a confidence percentile threshold, p, derived from a calibration
dataset. For example, p75 sets the threshold at the 75th
percentile of confidence scores, meaning inputs exit early if
their confidence is in the top 25% of calibration scores.

B. Performance Evaluation

The core results of our evaluation are summarized in Table 1.
The data clearly illustrates the trade-off between accuracy and
inference acceleration. By adjusting the exit threshold p, we
can navigate this trade-off to suit different application require-
ments. At p50, the policy is aggressive, allowing 73.05% of
samples to exit early, which results in a maximum speedup of
1.54x over the baseline at the cost of a slight drop in accuracy.
The p75 threshold offers a balanced compromise, achieving
a competitive accuracy of 80.51% while still providing a
significant 1.15x speedup. A conservative p95 threshold forces
most samples through the entire network, recovering accuracy
to 80.66% but offering negligible acceleration.

TABLE I: Accuracy and Performance Trade-off

Model Conf. Val Acc. (%) EE Rate (%) Speedup
FP32 (PyTorch) 87.65 - -
INT8 (Baseline) 81.09 - 1.00x
Our EE (p50) 79.45 73.05 1.54x
Our EE (p75) 80.51 29.56 1.15x
Our EE (p95) 80.66 1.33 1.01x

Furthermore, the estimated memory requirements confirm
the model’s suitability for deployment on typical MCUs. Our
model requires a Flash Memory footprint of 260 KB, which
is comparable to the baseline, and a Peak SRAM Usage of
only 67 KB, keeping it well within the constraints of low-cost
microcontrollers.

391

IV. CONCLUSION

In this paper, we presented an end-to-end pipeline for
creating and evaluating efficient, quantized early-exit networks
specifically targeted for microcontroller-based applications.
We introduced a mixed training strategy to ensure stable and
effective learning of intermediate branches on a pretrained
backbone and demonstrated the application of post-training
quantization to the entire dynamic network.

Our TFLite-based evaluation confirmed the efficacy of this
approach, revealing a clear and controllable trade-off between
inference latency and model accuracy. The results show that
our method can achieve up to a 1.54x theoretical speedup
over a conventional quantized baseline while maintaining a
low memory footprint suitable for typical MCUs. This work
validates that dynamic inference is not just a theoretical
concept but a practical and potent strategy for optimizing
neural network performance in the highly constrained world
of TinyML. Future work could explore Quantization-Aware
Training (QAT) to further improve accuracy or automate the
optimal placement of exit branches within a given architec-
ture.

ACKNOWLEDGMENT

This research was partly supported by the Challengeable Fu-
ture Defense Technology Research and Development Program
through the Agency For Defense Development(ADD) funded
by the Defense Acquisition Program Administration(DAPA)
in 2022(No0.915062201,60%) and Institute of Information
& communications Technology Planning & Evaluation(II'TP)
grant funded by the Korea government(MSIT)(No.RS-2024-
00339187,Core Technology Development of On-device Robot
Intelligence SW Platform,40%)

REFERENCES

[1] P. Warden and D. Situnayake, TinyML: Machine Learning with Tensor-
Flow Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly
Media, 2019.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[3] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[4] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: A very
deep network with branching built in,” in 2017 IEEE International
Conference on Image Processing (ICIP), 2017, pp. 2244-2248.

[5] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” in Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019, pp. 3301—
3310.

[6] A. Lahiany and Y. Aperstein, “Pteenet: Post-trained early-exit neural
networks augmentation for inference cost optimization,” IEEE Access,
vol. 10, pp. 69 680-69 687, 2022.

[7]1 B. Krzepkowski, M. Michaluk, F. Szarwacki, P. Kubaty, J. Pomponi,
B. WAtjcik, K. Adamczewski er al., “Joint or disjoint: Mixing training
regimes for early-exit models,” arXiv preprint arXiv:2407.14320, 2024.

[8] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[9] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

