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Abstract—In this paper, we introduce a DRAM Error Correc-
tion Code (ECC) providing chipkill-level protection for x4 DDRS5
DIMMs using 4-bit symbol Reed-Solomon (RS) codes. Since ECC
was introduced to address increasing DRAM error rates caused
by technology scaling, RS codes have been widely employed in
various chipkill ECC solutions because of their robust burst
error correction capability. Due to the limited codeword length
of 4-bit symbol RS codes and mismatches with DDR4 DIMM
configurations, 8-bit symbol RS codes have traditionally been pre-
ferred. However, the sub-channel configuration of DDRS DIMMs
is well-suited for 4-bit symbol RS codes, offering advantages such
as reduced computational complexity and smaller lookup table
(LUT) sizes owing to the decreased Galois field size. We propose
a DRAM ECC scheme based on (10,8) 4-bit symbol RS codes
and present comparative results evaluating its error correction
and detection capabilities against existing ECC methods.

Index Terms—DRAM ECC, Reed-Solomon codes, Rank-Level
ECC, chipkill-level correction

I. INTRODUCTION

Ensuring reliability has become a primary challenge for
DRAM, due to the increased error rates introduced by tech
scaling. In early DRAMs, most errors were caused by defective
cells resulting from manufacturing faults, and the overall error
rates were sufficiently low that reliability could be maintained
by replacing defective regions using spare rows and columns
[1]-[3]. However, the increased error rate caused by sustained
technological scaling in DRAM has exceeded the coverage of
traditional sparing techniques [4]-[6].

To address this issue, Error Correction Codes (ECC) were
introduced into DRAM systems [7]-[10]. Two primary ap-
proaches have been proposed: one integrates ECC directly
within the DRAM chip, a technique referred to as On-Die
ECC (OD-ECC) [11], [12], and the other corrects errors at
the DIMM level using additional redundancy chips, commonly
known as Rank-Level ECC (RL-ECC) [13].

RL-ECC has commonly employed either Single Error Cor-
rection and Double Error Detection (SEC-DED) codes or
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chipkill-level correction schemes [5]. SEC-DED codes have
been widely used due to its simple structure and reasonable
correction capability [14]. However, as cell density increased,
multi-bit errors—particularly burst errors occurring in adjacent
cells within the same chip—became more frequent. To address
such faults, more robust chipkill-level correction has been
proposed in high-reliability systems [13], [15].

There are various approaches to implementing chipkill-
level correction, which refers to the ability to correct all
possible error patterns within a single chip. Among them,
a commonly used method leverages the symbol-level error
correction capability of RS codes to tolerate chip-level faults
[16]-[19].

Existing RS code-based chipkill schemes typically employ
8-bit symbols, as the codeword length of 4-bit symbol RS
codes has not been compatible with the 72-bit bandwidth
configuration of x4 DDR4 ECC DIMMs. However, organized
into two 40-bit sub-channels, DDR5 ECC DIMMs now make
x4 chipkill-level correction using 4-bit symbol RS codes a
practical and compatible option.

In this paper, we propose a novel x4 chipkill correction
scheme based on RS codes. The proposed RS code employs 4-
bit symbols aligned with chip boundaries, which allows the use
of a smaller Galois field and offers several advantages com-
pared to conventional 8-bit symbol chipkill implementations.
The remainder of this paper is organized as follows. Section
IT gives the preliminaries on DRAM organization and related
works. In Section III, we propose our x4 chipkill correction
scheme. The numerical results are given in Section IV, and we
conclude the paper in Section V.

II. PRELIMINARIES
A. Notations and Definitions

Let an m-bit symbol be an element over the Galois field
GF(2™). A code of length N and dimension K is denoted
as an (N, K) code. If the code is binary, N and K represent
the number of bits; if it is nonbinary (e.g., RS codes), they
denote the number of symbols.

B. DRAM Organization

Since the development of DRAM in 1968 [20], it has
become an indispensable component in computer systems due
to its low cost and high density. A single XN DRAM chip
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Fig. 1. DRAM ECC DIMM architectures.

features an N-bit input/output interface through N data pins
(DQs), and multiple such chips are assembled on a Dual In-
line Memory Module (DIMM) to provide a wider memory
interface. For example, a DDR4 non-ECC DIMM typically
consists of either sixteen x4 chips or eight x8 chips to form a
64-DQ interface. This enables data transfers in 64-bit chunks,
which are repeated to compose a cache block—typically 64
bytes in size—for communication between the processor and
memory. A total of eight 64-bit transfers are performed to
construct a 64-byte cache block, and this repetition is referred
to as the burst length.

To provide ECC redundancy, DDR4 ECC DIMMs extend
the standard 64-bit data interface to 72 bits by incorporating
an additional x8§ DRAM chip [21]. With this 12.5% redun-
dancy, RL-ECC schemes such as SEC-DED and chipkill-level
correction can be applied.

DDRS DIMMs introduced several architectural changes, the
most notable of which is the increase in burst length from 8 to
16. As a result, only 32 DQs are needed to construct a 64-byte
cache block, and each DIMM is divided into two independent
32 DQ-wide sub-channels. In ECC-enabled DIMMSs, each
sub-channel adds 8 extra DQs for redundancy, forming a 40
DQ-wide interface, which can be implemented using ten x4
chips or five x8 chips [22]. We illustrate these ECC DIMM
organizations in Fig. 1.

Although the redundancy ratio increases to 25%, each
sub-channel still uses 8 redundant DQs—equivalent to
DDR4—allowing existing ECC schemes to be reused. Fur-
thermore, since fewer data chips are used per sub-channel, the
overall probability of error occurrence, particularly those ex-
ceeding chipkill-correction capabilities, is reduced. Motivated
by this DDRS ECC DIMM configuration, this paper proposes
a new chipkill-correction scheme for x4 DDRS5 architecture.

C. Prior Works

1) Interleaved SEC-DED: One of the early techniques to
provide chipkill-level protection was to apply SEC-DED codes
in an interleaved manner [13]. This approach employed four
(72,64) SEC-DED codewords, distributing the 4-bit data from
a x4 DRAM chip across four different codewords. As a result,

the scheme enabled single-chip error correction and double-
chip error detection.

However, it required accessing a total of 256 bits to decode a
single logical data unit, which significantly increased memory
access overhead. This large access granularity degraded system
performance and efficiency, and consequently, this method is
no longer used in modern DRAM systems.

2) 4-bit symbol BCH codes: Another approach to ensuring
chipkill-level correction is to use symbol-based ECC. Earlier
AMD DRAM systems supported two ECC modes: a normal
ECC mode using a (72,64) Hamming code for SEC-DED, and
a chipkill ECC mode [23]. The chipkill ECC mode employs a
(36,32) nonbinary BCH code over 4-bit symbols, where each
symbol corresponds to 4 bits of data from a x4 DRAM chip.
With single symbol error correction capability, this scheme
can tolerate a full-chip failure.

Although RS codes using 4-bit symbols can correct up to
two symbol errors with four parity symbols, nonbinary BCH
codes were adopted. This choice appears to be due to the
limitation of RS codeword length: an m-bit symbol RS code
has a fixed length of N = 2™ — 1, which is too short to fit
the configuration of DDR4 ECC DIMMs.

3) 8-bit symbol RS codes: Subsequently, AMD adopted an
8-bit symbol RS code scheme [15]. In this approach, as shown
in Fig. 2(a), each symbol is composed of 8 bits from the same
chip, obtained by reading 4 bits twice from a single x4 chip.
The 18 symbols from the 18 chips of a DDR4 ECC DIMM
form an (18,16) RS code, enabling chipkill-level protection
through single symbol error correction. By employing 8-bit
symbols, the codeword length can be extended to 255, which
can then be shortened to design a codeword length suitable
for the DDR4 ECC DIMM configuration.

Furthermore, AMD introduced a mechanism to enhance
the detection capability for errors exceeding a single chip
failure by maintaining ECC history. Each 64B cache block is
composed of four (18,16) RS codewords. The system checks
whether a correction occurred for each codeword and records
the location of the corrected symbol. If any corrected symbol
location differs among the codewords, the corresponding cache
block is considered to contain an uncorrectable error due to
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Fig. 2. Configurations of existing DRAM ECC schemes.

miscorrection. This mechanism can also be applied to our
proposed scheme, and further details are discussed in Section
1.

4) Bamboo ECC: Another DRAM ECC technique employ-
ing RS codes is Bamboo ECC [18]. Unlike the previous chip-
boundary-aligned symbol organization, Bamboo ECC groups
per-pin 8-bit data into a single symbol, as illustrated in Fig.
2(b), and applies 8-bit symbol RS codes to provide chipkill-
level protection. In both DDR4 and DDRS5 environments,
Bamboo ECC can correct all possible faults in x4 chips using
a (72,64) and a (40,32) RS code, respectively, each with four-
symbol error correction capability. Furthermore, it can also
correct up to four random pin faults. By employing long
codewords, Bamboo ECC enhances error detection capability
and additionally proposes a variant that further improves
detection capability by sacrificing a portion of the random pin
error correction capability.

III. PROPOSED SCHEME

In this section, we present the code construction of the
proposed chipkill scheme for x4 DDRS ECC DIMM.

A. ECC Construction

Similar to prior works excluding Bamboo ECC, we use
symbols aligned with chip boundaries. As shown in Fig. 3,
4-bit data from a single chip are grouped into one symbol,
and errors are corrected using a (10,8) RS code. While this
RS symbol configuration was impractical for DDR4 DIMMs
due to the codeword length limitation described in Section II,
the narrower sub-channel bandwidth in DDRS DIMMs makes
it feasible. A 64B cache block consists of 16 codewords,
and single symbol error correction for each codeword enables
correction of any single chip failure. If any of the codewords
in a cache block contains a detectable but uncorrectable
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Fig. 3. Configuration of proposed scheme.

error (DUE), the entire cache block is considered to have
encountered a DUE.

This simplified codeword construction offers several advan-
tages. Unlike an 8-bit symbol that must handle 256 elements
in GF(2%), a 4-bit symbol only deals with 16 elements in
GF(2%), thereby reducing the complexity of computation cir-
cuits and the size of lookup tables (LUTSs). Moreover, decoding
a single-symbol error-correcting RS code does not require
complex procedures such as the Berlekamp—Massey algorithm,
Chien search, or the Forney algorithm [24]. Consequently, the
proposed scheme achieves a simpler encoder/decoder architec-
ture, reduced circuit size, and lower power consumption.

B. ECC History Mechanism

While a 4-bit symbol RS code offers several advantages,
it suffers from reduced error detection capability compared
to using 8-bit symbols. The mother codes for 4-bit and 8-
bit symbol RS codes have length 15 and 255, respectively;
however, when both are shortened to a length of 10, the
minimum distance remains the same. Nevertheless, in the
8-bit symbol RS code, the number of valid codewords is
significantly reduced, which leads to a much lower probability
of miscorrection. This difference is also evident in the error
correction outcome ratios presented in Section IV.

To enhance error detection capability, we consider an addi-
tional mechanism similar to that used in [17], which leverages
ECC history. A 64B cache block with a burst length of 16 is
divided into two 32B data blocks, each with a burst length
of 8. For each data block, we record whether a correction
occurred and the location of the corrected symbol for all eight
constituent codewords. In the case of a single chip failure, all
errors will be corrected and the correction locations will be
identical across all codewords. However, when errors exceed a
single chip failure, some codewords may either fail to correct
the errors or result in miscorrection.

For example, as illustrated in Fig. 4, when a single chip fail-
ure coincides with a single bit error, the codeword containing
the single bit error will have two symbol errors, making it
uncorrectable. In the worst case, this may result in a miscor-
rection, delivering erroneous data to the processor. To prevent
this, we utilize the recorded correction locations of the eight
codewords. If all corrected codewords report identical error
locations, the failure is classified as a single-chip error and
the decoded results are accepted. However, if any corrected
error occurs at a different location, it is considered a case
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TABLE I. Decoding results under different error scenario.

Error Scenario D;Z(;?lllrtlg 8-bit RS | Bamboo | 4-bit RS + Etl()jltHEsStory

1 Chip Error CE(%) 100 100 100 100

| DQS Error CE(%) 75.0372 | 93.3315 | 87.4942 0

+ 1 bit Error DUE(%) | 24.2225 | 6.6685 | 5.8253 93.3195
SDC(%) | 0.7403 0 6.6805 6.6805

| Chip Error CE(%) 0.3918 | 1.5398 | 6.2437 0

h DUE(%) | 96.4792 | 98.4587 | 43.7247 100

+ 1 bit Error
SDC(%) 3.129 0.0015 | 50.0316 0
CE(%) 0 0 0 0

2 Chip Error DUE(%) | 96.8623 | 99.998 | 98.5609 100
SDC(%) 3.1377 0.002 1.4391 0

where errors beyond a single chip failure have caused a
miscorrection. Although this history mechanism may classify
certain correctable errors as uncorrectable—thereby lowering
the correction success rate—it can significantly reduce the rate
of undetected errors.

IV. SIMULATION RESULTS

To evaluate the proposed scheme, we compare its perfor-
mance against 8-bit symbol RS codes and Bamboo ECC. In a
DDRS5 ECC DIMM environment, a 32B data block is encoded
according to each scheme, after which errors are injected and
decoding is performed. Four error scenarios are considered: (i)
one chip error, (ii) one DQS error plus one bit error, (iii) one
chip error plus one bit error, and (iv) two chip errors. For each
scenario, the affected bits are assumed to flip independently
with probability 1/2, and each scenario is repeated 10° times.

The decoding results are categorized into three outcomes:
CE (Correctable Error), DUE (Detectable but Uncorrectable
Error), and SDC (Silent Data Corruption). The distribution
of these outcomes is reported in Table I. Among these, SDC
represents cases where errors occur but remain undetected;
such cases are particularly critical because corrupted data may
be silently propagated within the system. This can lead to
delayed error discovery and high recovery costs, making the
reduction of SDC probability as important as maximizing the
number of correctable errors.
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For the 4-bit RS codes without ECC history, the perfor-
mance was generally weaker than Bamboo ECC but stronger
than 8-bit symbol RS codes across most scenarios. However,
in the 1 chip error + 1 bit error scenario, the limited detection
capability resulted in an excessively high SDC rate exceeding
50%. To address this detection weakness, we incorporated
the ECC history mechanism. While this enhancement did not
enable correction of errors beyond a single chip failure, it
significantly reduced the SDC rate to negligible levels.

V. CONCLUSION

This paper presents an RL-ECC scheme for DDR5 ECC
DIMMs. We introduced a DRAM ECC architecture that lever-
ages 4-bit symbol RS codes to provide x4 chipkill-level protec-
tion and compared its performance against two prior schemes.
The proposed design provides simplicity, but has the limitation
of weaker error detection. Our simulation demonstrats that
adding an ECC history mechanism can greatly reduce SDCs.
As future work, we plan to evaluate and compare the area,
latency, and power consumption of the 4-bit symbol RS code
encoder/decoder to further assess its practicality.
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