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Abstract—Loitering vessel behavior—marked by slow, irreg-
ular, or circling motion without navigational intent—is a key
indicator of illicit activities such as illegal fishing or covert
rendezvous. Detecting such behavior is challenging due to sparse
AIS transmissions, noisy measurements, and the lack of labeled
datasets. We propose an unsupervised framework that integrates
trajectory reconstruction, adaptive segmentation, and anomaly
detection to automatically label loitering segments without man-
ual annotation. A Reconstructive Adaptive Extended Kalman
Filter (R-AEKF) restores missing AIS points by modeling non-
linear vessel dynamics with adaptive noise estimation. Inter-
adaptive sliding windows capture local kinematic and entropy
features, which are clustered via HDBSCAN to isolate anomalous
segments. Loitering behaviors are further verified using spectral
and directional metrics. Experiments on real-world AIS data
demonstrate that the proposed method consistently outperforms
threshold-based and supervised baselines, offering a scalable
solution for Maritime Domain Awareness.

Index Terms—AIS trajectory reconstruction, anomaly detec-
tion, HDBSCAN, loitering detection, maritime surveillance, spec-
tral analysis, unsupervised learning, vessel behavior modeling.

I. INTRODUCTION

Maritime loitering behavior—where vessels engage in pro-
longed, irregular, and low-speed maneuvers within a localized
area—often signals illicit or covert activities such as illegal
fishing, rendezvous at sea, smuggling, or surveillance oper-
ations. Unlike straightforward transit or docking maneuvers,
loitering lacks a clear navigational objective and is typically
masked within dense maritime traffic or sparse oceanic re-
gions. Its detection is therefore of critical importance for
Maritime Domain Awareness (MDA), yet remains one of the
most challenging behavioral patterns to identify reliably.

The Automatic Identification System (AIS), mandated by
the International Maritime Organization (IMO) for large ves-
sels, serves as the primary data source for monitoring maritime
activity [1]. AIS broadcasts real-time position, speed, and
course information that can reveal patterns of movement
over time. However, AIS data is inherently noisy and fre-
quently suffers from missing segments due to satellite blind
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spots, voluntary transponder shutdowns, spoofing, or decep-
tive broadcasting [2]. These characteristics severely limit the
effectiveness of traditional rule-based or supervised methods
in detecting subtle behavioral anomalies like loitering.

Loitering behavior is particularly difficult to quantify due
to its contextual nature. For instance, a low-speed circling
pattern may be routine near ports but highly suspicious in
restricted or remote zones. Moreover, the absence of labeled
datasets precludes the use of conventional supervised learning
techniques. Thus, effective loitering detection systems must:
(i) estimate vessel intent from partial observations, (ii) adapt to
diverse motion patterns across vessel types and geographies,
and (iii) operate without labeled behavioral categories.

In this work, we propose a unified unsupervised framework
for loitering detection that bridges raw AIS data with inter-
pretable behavioral insights. First, a Reconstructive Adaptive
Extended Kalman Filter (R-AEKF) recovers missing or noisy
AIS segments while preserving nonlinear vessel dynamics, en-
suring reliable trajectory continuity. Next, an adaptive sliding
window captures speed and heading shifts, and HDBSCAN
clusters normal patterns while isolating loitering-like outliers.
Finally, spectral and directional concentration analysis on
Course Over Ground (COG) labels loitering segments and
classifies vessel behaviors into six types, enabling fine-grained,
interpretable anomaly detection without manual supervision.

Our contributions include: (i) a R-AEKF for reconstructing
incomplete AIS trajectories; (ii) an adaptive sliding window
segmentation and HDBSCAN-based pipeline for unsupervised
loitering detection under AIS sparsity; and (iii) a COG-based
spectral analysis for automatic labeling and classification into
six distinct loitering types.

We validate our framework on large-scale AIS datasets
collected in the Korean Exclusive Economic Zone (EEZ),
demonstrating its ability to uncover subtle, spatially diverse
loitering activities with high interpretability. By emphasizing
behavior estimation under uncertainty and eliminating the
need for labeled supervision, this work advances scalable and
operationally relevant solutions for maritime surveillance.
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II. RELATED WORK

Maritime anomaly detection has been widely studied, focus-
ing on identifying irregular vessel behaviors such as loitering,
route deviation, and suspicious rendezvous. Early approaches
relied on rule-based systems and handcrafted features, while
recent works emphasize machine learning and unsupervised
methods.

Nascimento et al. [3] proposed a hybrid surveillance frame-
work combining vessel motion features with expert rules to
detect illegal activities, highlighting the benefits of multi-
source fusion. Lane et al. [4] presented one of the earliest
threat assessment systems based on AIS patterns, laying the
foundation for anomaly-driven maritime monitoring. More
recent efforts leverage clustering: Kumar et al. [5] employed
HDBSCAN+ for detecting abnormal behaviors, while Wijaya
and Nakamura [6] quantified loitering via dynamic AIS mes-
sage features.

Loitering behavior refers to the act of a vessel remaining
in a limited geographic area for an extended period while
performing repetitive, irregular, or non-navigational maneu-
vers. According to the loitering detection study, such behavior
is often characterized by low-speed movement with high
spatiotemporal redundancy—such as circling, zig-zagging, or
random turning—without a clear route progression. These
patterns are commonly observed in scenarios involving illegal
fishing, patrol operations, unauthorized rendezvous, or surveil-
lance activities near protected maritime zones.

Estimating loitering patterns is challenging due to the
variability in ship behavior and the absence of ground truth
labels. Typical loitering indicators include low mean speed
(Ū ), high turn rate (ω̄χ), directional entropy (H(χ)), and
trajectory redundancy metrics such as:

ψ =
D

PM
, (1)

where D is the trajectory length and PM is the perimeter of
the minimum bounding rectangle. Low values of ψ indicate
spatially confined and repetitively turning behaviors. Enhanced
versions of this metric incorporate heading and course changes
[6] to better capture dynamic motion.

However, in real-world monitoring scenarios, these indica-
tors are often unreliable due to the fragmented nature of AIS
data. When AIS signals are sparse or missing—whether due
to low transmission frequency in open sea, signal occlusion
in narrow straits, or deliberate AIS deactivation by vessels at-
tempting to evade detection—the observed trajectories become
disjointed or incomplete. This lack of temporal continuity
complicates the estimation of behavior-based metrics such as
speed, turn rate, or redundancy.

Discrete and irregular AIS signals often result in broken
trajectories with missing segments, making it difficult to ob-
serve the full behavior of loitering maneuvers such as circling
or drifting. These gaps hinder accurate computation of motion
features and may cause partial or complete misclassification of
loitering behavior. For instance, short disconnected segments

may miss the turning or dwelling phases of a loitering pattern,
resulting in under-detection or misclassification.

Moreover, loitering behavior can span across time windows
larger than typical AIS reporting gaps. Loitering often spans
beyond typical AIS gaps, with sporadic transmissions breaking
the behavioral arc. Conventional trajectory measures,and even
CNN classifiers,fail when missing segments distort patterns,
e.g., circling paths reduced to incomplete arcs resembling
normal transit.

Trajectory reconstruction has also been a key research
direction. Perera and Soares [7] applied an Extended Kalman
Filter (EKF) for vessel trajectory estimation, and Mieczyńska
et al. [8] integrated DBSCAN for AIS data recovery. Building
on this, Thi et al. [9] introduced an Adaptive EKF variant
tailored to maritime dynamics, showing improved handling of
missing transmissions. Similar filtering techniques have been
extended to unmanned surface vehicles [10].

For loitering detection, Zhang et al. [11] used trajectory
shape descriptors and CNNs, while Liang et al. [12] pro-
posed AIS-based anomaly detection using knowledge-driven
representations, and Li et al. [13] combined autoencoders with
Temporal Convolutional Networks for spatiotemporal anomaly
discovery.

Compared to these studies, our framework uniquely inte-
grates (i) adaptive trajectory reconstruction, (ii) inter-adaptive
sliding window segmentation, and (iii) intra-segments unsu-
pervised loitering classification. This design enables automatic
labeling of loitering behaviors without manual intervention,
providing both scalability and interpretability for real-world
maritime domain awareness.

III. PROPOSED MODEL

In this section, we propose a comprehensive framework for
detecting and classifying loitering vessels using reconstructed
AIS data.

As illustrated in Figure 1, the methodology consists of
two major components: (i) AIS trajectory reconstruction using
Reconstructive-Adaptive Extended Kalman Filter (R-AEKF)
and inter-trajectory segmentation and clustering via Adaptive
Momentum HDBSCAN, (ii) intra-trajectory loitering detection
using spectral concentration in sliding windows and loiter-
ing pattern classification mainly based on course-over-ground
(COG) variations.

The proposed outlier detection framework leverages Au-
tomatic Identification System (AIS) data to detect irregular
vessel behaviors, with a particular focus on identifying loi-
tering — defined as the act of vessels idling or maneuver-
ing without clear navigational objectives. This behavior is
often indicative of unregulated maritime activities such as
illegal fishing, smuggling, or surveillance. The framework is
structured into three core stages: trajectory reconstruction,
outlier detection, and loitering behavior classification. Each
component is designed to address the inherent challenges of
AIS-based maritime surveillance, including incomplete data,
lack of labeled training examples, and behavior variability
across vessel types and conditions.
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Fig. 1: Proposed framework for detecting and classifying loitering behaviors from reconstructed AIS data. The system
integrates reconstruction R-AEKF, adaptive sliding window HDBSCAN segmentation, windowed spectral loitering detection,
and classification based on angular variation and Fourier transform features.

Single AIS Trajectory Points: For a vessel uniquely
identified by a Maritime Mobile Service Identity (MMSI), an
AIS trajectory point is defined as:

Ai = {ti, µi, li, Ui, χi} (2)

where:
• ti ∈ R: Timestamp in Unix epoch seconds
• µi ∈ [−90◦, 90◦]: Latitude
• li ∈ [−180◦, 180◦]: Longitude
• Ui ∈ R≥0: Speed Over Ground (SOG)
• χi ∈ [0◦, 360◦]: Course Over Ground (COG)

A trajectory for vessel k is defined as T k = [Ak
1 , A

k
2 , . . . , A

k
n].

Trajectory Reconstruction. Incomplete AIS data caused
by signal loss or ”going dark” results in discontinuities in T k.
We address this using a Reconstructive Adaptive Extended
Kalman Filter (R-AEKF) to estimate the vessel’s state vec-
tor x̂t = [µt, lt, Ut, χt, aU,t, ωχ,t]

T from noisy or missing
observations. For extended gaps, interpolation using cubic
splines maintains kinematic continuity. The resulting trajectory
T k

rec = [Ak
1 , A

k
2 , . . . , A

k
m] satisfies m ≥ n and preserves

realistic vessel dynamics.
Behavior-Based Outlier Detection: Reconstructed trajecto-

ries are segmented using adaptive sliding windows. A segment
Segki ⊂ T k is described by the behavioral feature vector:

ϕm = [Ūm, σU,m, χ̄m, H(χm), ω̄χ,m] (3)

where:
• Ūm: Mean SOG
• σU,m: SOG standard deviation
• χ̄m: Mean COG
• H(χm): COG entropy
• ω̄χ,m: Mean turn rate
Let S = {Segki } be the set of trajectory segments and define

a feature map g : S → Rd by

ϕk
i := g(Segki ) =

[
Ūk
i , σk

U,i, χ̄k
i , H(χk

i ), ω̄k
χ,i

]
(4)

We run HDBSCAN on the feature set Φ = {ϕk
i }, obtaining

labels ℓ(ϕk
i ) ∈ {−1, 1, . . . , C} (with −1 denoting noise).

We then declare as anomalous those original segments whose
features are labeled noise:

A =
{

Segki
∣∣ ℓ(ϕk

i ) = −1
}

(5)

Loitering Behavior Classification:Anomalous segments
are further classified into 6 interpretable loitering categories:
Oscillatory Loitering, Transition Loitering, Hesitant Loi-
tering, Steady Loitering, Gradual Drift Loitering, Circular
Loitering.

Each class is derived from ϕm and refined using domain-
specific knowledge (e.g., vessel type, geography). This allows
distinction between legitimate and suspicious loitering behav-
ior.

Overall, the framework addresses AIS gaps via R-AEKF
and interpolation, performs label-free anomaly detection with
HDBSCAN, and categorizes loitering behaviors using inter-
pretable pattern rules.

A. Trajectory Reconstruction and Behavior-Based Outlier
Segmentation

We use a two-stage pipeline: (i) trajectory reconstruction
with a Reconstructive Adaptive EKF (R-AEKF) and (ii)
behavior-based segmentation with density clustering.

The R-AEKF operates in two main phases:
1) Prediction Phase: The state and its covariance are

propagated using the vessel dynamics model and inter-
polation smoothing.

2) Update Phase: When AIS measurements are available,
the predicted state is corrected using the observed mea-
surement, weighted by the Kalman gain.

State and measurement vectors of R-AEKF are

xt = [µt, lt, Ut, χt, aU,t, ωχ,t]
⊤, (6)

yt = [µt, lt, Ut, χt]
⊤. (7)
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Algorithm 1 Unified R-AEKF Reconstruction and Adaptive
Sliding HDBSCAN Segmentation

1: Inputs: AIS per vessel; dynamics f(·); measurement h(·)
2: State-Transition Jacobian Ft, measurement Jacobian Ht

3: (Lmin, Lmax, kU , kχ, γ); HDBSCAN params
4: Output: Reconstructed {T k

rec}; anomalous segments A
5: Init x̂0,P0; base covariances Q0,R0

6: for each vessel k do
7: Init x̂0|0,P0|0; Q,R ← Q0,R0; T k

rec ← ∅
8: for each time t do
9: Predict: x̂t|t−1 = f(x̂t−1|t−1)

10: Pt|t−1 = FtPt−1|t−1F
⊤
t +Q

11: if yt available then
12: Kt = Pt|t−1H

⊤
t (HtPt|t−1H

⊤
t +R)−1

13: Update: x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1))
14: Pt|t = (I−KtHt)Pt|t−1

15: adapt Q,R from recent residuals
16: else
17: Blend w/ interp (Eq. (8)):
18: x̂t|t = β x̂t|t−1 + (1− β)xinterp

t

19: Pt|t←Pt|t−1

20: end if
21: Append x̂t|t to T k

rec

22: end for
23: Adaptive windowing: compute Lm via Eq. (9)
24: Smooth Lfinal

m = γLfinal
m−1 + (1− γ)Lm

25: Segmentation: split T k
rec using Lfinal

m

26: Segment-wise features form the vector ϕm (Eq. (3))
27: end for
28: Robust-scale {ϕm}; run HDBSCAN; set A = {Segk

m |
label(ϕm) = −1}

29: return {T k
rec}, A

R-AEKF follows predict–update while adaptively tuning co-
variances from recent residuals. Long gaps are spline-filled;
predictions are blended with interpolation for stability:

x̂k|k−1 = β f(x̂k−1|k−1) + (1− β)xinterp
k , β∈ [0, 1]. (8)

Adaptive segmentation & clustering. Reconstructed tra-
jectories are partitioned by an inter-adaptive window to deter-
mine window size for segment m, we define Lm as:

max

(
Lmin,min

(
Lmax, kU · Ūm−1

1 + σU,m−1

+ kχ · 1

1 + |ω̄χ,m−1|

)) (9)

Each resulting segment is encoded by a behavioral feature
vector and HDBSCAN groups dense routine behavior and flags
low-density segments as anomalies.

B. Multi-Scale Loitering Detection and Classification

After inter-trajectory anomaly mining, we localize loitering
within each vessel path by detecting periodic heading patterns
in multi-scale windows. Let χ

(k)
i = {χ(i), . . . , χ(i + wk −

1)} be the COG series in a window of size wk. We compute
its discrete spectrum by applying the Fast Fourier Transform
(FFT) to obtain the frequency-domain representation [14]:

FT
(k)
i [f ] = FFT

(
χ
(k)
i

)
[f ], (10)

power PO(k)
i [f ] = |FT(k)

i [f ]|2, and the spectral concentration
(periodicity score)

SC
(k)
i =

maxf≥1 PO
(k)
i [f ]∑wk−1

f=1 PO
(k)
i [f ]

. (11)

A segment is flagged as loitering at scale k if SC
(k)
i > θ.

Because loitering behaviors occur at multiple durations, we
fuse detections across window sizes wk ∈ {w1, . . . , wK}:

LO =

K⋃
k=1

{
χ
(k)
i | SC(k)

i > θ
}
. (12)

a) Geometric cues and labels.: To distinguish stationary
loitering from slow drift, we pair spectral evidence with simple
geometry. Heading variability is measured by

∆χ = max(χ)−min(χ), (13)

and lateral drift by

Dlat =
√
(µAi − µA0)

2 + (lAi
− lA0

)2. (14)

We coarsely bin turns into A : [0, 30◦), B : [30◦, 120◦), C :
[120◦, 180◦). Combining ∆χ (via A/B/C), SC , and drift Dlat
yields six interpretable types:

• Oscillatory (AA): sharp back-and-forth; high SC, low
Dlat.

• Transition (AB): mix of sharp/moderate turns; mid SC,
mid Dlat.

• Hesitant (AC): irregular sharp/gradual; low SC, higher
Dlat.

• Steady (BB): consistent moderate turning; high SC, low
Dlat.

• Gradual Drift (BC): moderate/gradual with drift; low
SC, high Dlat.

• Circular (CC): near-constant turning; very high SC,
Dlat ≈ 0.
b) Refinement: For borderline cases we add a lightweight

descriptor—the peak ratio (PR) between adjacent spectral
peaks in the COG power spectrum and train a small Random
Forest on {∆χ, Dlat, H(χ), σU ,PR} to refine rule-based
labels, preserving interpretability while improving consistency
on noisy AIS.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental results of our pro-
posed self-supervised framework for unsupervised maritime
anomaly detection using AIS data. The evaluation includes
two main parts: a detailed description of the dataset, eval-
uation metrics, and results for both trajectory reconstruction
and clustering-based anomaly detection as well as loitering
classification.
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A. Dataset Description & Evaluation Metrics

We evaluate our method on a large-scale AIS dataset
collected within the Korean Exclusive Economic Zone (EEZ)
between November 2023 and March 2024. This dataset com-
prises over 36 million AIS messages from more than 21,000
unique vessels, including fishing, cargo, and passenger ships.
The data was collected via both terrestrial and satellite re-
ceivers, with each AIS point containing key fields: MMSI,
timestamp, latitude, longitude, speed over ground (SOG), and
course over ground (COG).

The dataset poses the following challenges:
• Frequent Data Gaps: Over 95% of trajectories exhibit

AIS gaps longer than 10 minutes, primarily due to
intentional transponder shutdowns or signal occlusion.

• Behavioral Diversity: Vessels of different types and
functions show varying motion patterns, necessitating
adaptive analysis.

Preprocessing involved deduplication of vessel IDs, filter-
ing of stationary vessels (SOG < 0.5 knots), and trajectory
segmentation based on a temporal threshold of 180 minutes.

We adopt quantitative metrics to evaluate two core modules:
1) Trajectory Reconstruction Accuracy: Measured using

Root Mean Square Error (RMSE) based on the haversine
distance between predicted and true vessel positions [9].

2) Clustering Quality: We assess clustering quality with
two standard indices: the Silhouette score [15] and the Davies–
Bouldin index [16]. Silhouette summarizes cohesion vs. sep-
aration (values near 1 indicate well-separated clusters; values
near 0/negative suggest overlap or misassignment). Davies–
Bouldin measures the average worst-case ratio of within-
cluster scatter to between-cluster separation (lower is better).
We report mean Silhouette and DBI across all segmented
windows and configurations.

B. Experimental Results

1) Trajectory Reconstruction via R-AEKF: We evaluate the
Reconstructive Adaptive Extended Kalman Filter (R-AEKF)
against multiple baselines: linear and cubic spline interpo-
lation, standard Kalman Filter (KF), Reconstructive KF (R-
KF), and traditional AEKF. Table I reports RMSE values in
kilometers.

The R-AEKF (cubic spline) achieved the lowest RMSE
of 0.176 km, showing robust performance in handling data
gaps and non-linear motion. Its dynamic noise adjustment and
extended state modeling notably improve reconstruction in
noisy and sparse AIS scenarios.

Figure 2 illustrates the improvements of R-AEKF over
traditional AEKF. In (a), the original AIS trajectory exhibits
substantial gaps due to signal loss or AIS-off events. The
basic AEKF (b) partially interpolates motion but suffers
from deviation during complex maneuvers. The R-AEKF
(c) significantly improves reconstruction by leveraging both
model-based predictions and spline-smoothed interpolation,
producing trajectories with more realistic dynamics and better
alignment with surrounding points.

(a) Initial trajectory (b) AEKF vs initial trajectory (c) AEKF vs R-AEKF

Fig. 2: Comparison of reconstructed vessel trajectories. (a)
Initial AIS data with missing segments; (b) AEKF-based
reconstruction vs. raw data; (c) Enhanced reconstruction by
R-AEKF highlighting recovery of missing segments and im-
proved continuity.

Oscillatory Steady Gradual Drift

Transition Hesitant Circular

Fig. 3: Loitering Segments Trajectories Detection and six types
Classifications

This refined estimation is particularly critical in anomaly
detection, as precise path reconstruction affects downstream
segmentation and loitering classification.

2) Outlier Detection with Inter-Adaptive Sliding Window
HDBSCAN: To evaluate the effectiveness of our proposed
inter-adaptive segmentation approach, we conducted a com-
parative analysis using three different trajectory segmentation
strategies: (a) a fixed-length window with maximum size
(Lmax = 40), b2) a fixed-length window with minimum
size (Lmin = 20), and (c) our momentum-based adaptive
windowing scheme described in equation (9).

Quantitative quality was assessed with Silhouette (cohe-
sion/separation) and Davies–Bouldin (compactness vs. sep-
aration). With R-AEKF+HDBSCAN, the momentum-based
adaptive windowing achieved the best scores (Silhouette =
0.459, DBI = 0.923), outperforming fixed-length baselines.

Adaptive windows resize to local dynamics (speed/heading
changes), isolating brief or uneven behaviors (sharp turns,
slow drift) more cleanly. Fixed windows misalign with transi-
tions—either merging short anomalies or oversplitting steady
motion—yielding weaker cluster structure.

3) Loitering Trajectory Classification: A total of 4,381
loitering segments were detected using the adaptive sliding
window approach; examples of the six patterns (Oscilla-
tory, Steady, Gradual Drift, Transition, Hesitant, Circular) are
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Table I: Trajectory Reconstruction RMSE (km) Comparison

Method RMSE (km)
Interpolation (Linear) 0.271

Interpolation (Cubic spline) 0.183
Kalman Filter (KF) 0.429

R-KF (Linear) 0.215
R-KF (Cubic spline) 0.198

Extended KF 0.354
R-AEKF (Linear) 0.179

R-AEKF (Cubic spline) 0.176

Table II: Clustering (R-AEKF+HDBSCAN) Results Analysis

Size Clusters Outliers Silhouette DB Index
L max (40) 2617 1881 0.432 0.928
L min (20) 2632 1967 0.440 0.945
L adaptive 2595 1837 0.459 0.923

shown in Fig. 3. We then compare a Random Forest (RF) with
tuned hyperparameters against a Recurrent Neural Network
(RNN) for loitering-type classification. Consistent with the
qualitative distinctions in Fig. 3, the tuned RF achieves higher
accuracy and F1 than the RNN while remaining lightweight
for deployment. Hyperparameter tuning was performed on
the RF model using GridSearchCV, optimizing for the best
combination of parameters.

In Table III, the performance of different classification
methods is presented. The RF (tuned) model achieve with
the highest performance, achieving 89.57% accuracy. The RF
model with tuning achieved the highest accuracy and F1-score,
outperforming other methods like SVM, RNN, LSTM and
GRU. Compared with deep learning baselines, the resulting
pipeline has markedly lower computational and memory costs,
enabling low-latency, real-time deployment without sacrificing
performance.

V. CONCLUSION

We presented a streamlined, unsupervised AIS loitering-
detection pipeline that stays robust with sparse, noisy, unla-
beled data: R-AEKF reconstructs trajectories, adaptive win-
dows segment them, HDBSCAN flags anomalies, and spec-
tral/COG cues automatically label six loitering types—turning
raw tracks into interpretable behaviors. By restoring conti-
nuity, adapting window sizes to local dynamics, and using
density cues plus frequency signatures, the method reliably
surfaces suspicious maneuvers such as illegal fishing, covert
rendezvous, or spoofing.

The approach is modular and operationally ready: it can
prioritize high-risk trajectories, reduce analyst workload, and
ingest contextual layers (e.g., registries, restricted zones) to
refine alerts. Its data efficiency and interpretability make it
suitable for deployment in diverse maritime environments.
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Table III: Loitering Trajectory Classification Performance
Comparison

Method Acc (%) Pre (%) Recall (%) F1-Score (%)
SVM 75.22 67.34 70.74 68.99
RNN 64.57 64.82 61.70 63.20

LSTM 73.94 75.77 71.94 73.80
GRU 76.69 84.48 73.37 73.97

RF (tuned) 89.57 86.09 87.78 86.94
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