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Abstract—Additive Manufacturing (AM) enables the
production of parts with irregular shapes, where variations in
geometry, size, material, and color make it difficult to perform
consistent quality inspection using conventional rule-based
methods. In particular, each product often requires a different
baseline, and repeated data collection, labeling, and training are
needed posing significant limitations for real-time inspection
systems. To address this, we apply the Learned Perceptual
Image Patch Similarity (LPIPS), which models human visual
perception and can identify perceptual differences without
repeated learning. We compare its performance with traditional
similarity metrics such as Structural Similarity Index (SSIM)
and Peak Signal-to-Noise Ratio (PSNR). Experimental results
show that the proposed LPIPS-based method can effectively
detect perceptual differences across the entire image of
irregular products without requiring predefined Regions of
Interest (ROI), enabling flexible and reliable quality evaluation
across various product types without the need for additional
retraining.
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I. INTRODUCTION

Additive Manufacturing (AM) enables the fabrication of
highly complex and customized geometries that are
impractical with traditional manufacturing methods. However,
to achieve the required surface quality and mechanical
integrity, precise post-processing and the associated quality
inspection are indispensable [1-3]. In particular, the enhanced
design freedom of AM parts amplifies the need for accurate,
non-destructive evaluation during this stage. Moreover, mass
customization has introduced a vast array of part geometries,
sizes, materials, and colors. Conventional inspection systems
relying on predefined “normal” baselines struggle with this
diversity. Each new variant requires fresh data collection,
manual labeling, and model retraining, resulting in significant
time and resource overhead [4].

This challenge calls for a paradigm shift toward novel
inspection technologies capable of emulating human-like
cognitive perception to identify and rapidly quantify visually
salient discrepancies. In the context of AM post-processing,
such a flexible, Al-based inspection method has emerged as a
crucial factor for enhancing production quality and advancing
automation.

Previous studies have predominantly relied on traditional
pixel-based similarity metrics like PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity Index) to detect
shape anomalies or visual discrepancies [5]. However, these
techniques have a limitation: their similarity values fluctuate
significantly with even minor changes in a product's position
or angle, making them unsuitable for unaligned, irregularly
shaped products.
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Consequently, these methods have been restricted to
products with uniform shapes or required pre-defining a
Region of Interest (ROI) or mask for comparison. In real-
world AM environments, where a continuous stream of
irregularly shaped products is introduced, setting an ROI is
inherently difficult, and repeatable shape-based comparisons
are often impossible. Therefore, there is a clear need for an
approach that can quickly and automatically quantify
similarity at a global image level without requiring pre-
defined areas.

II. VISUAL QUALITY INSPECTION ALGORITHM

In this paper, to automatically evaluate the quality of
irregularly shaped additively manufactured products, we
measure perceptual feature differences over entire images
using the Learned Perceptual Image Patch Similarity (LPIPS)
score and compare its behavior with conventional similarity
metrics such as SSIM and PSNR [5,6].

Existing quality evaluation methods often depend on
predefined reference datasets or standardized shape criteria,
which limits their consistency and generalization for diverse,
non-aligned shapes. To address these shortcomings, we
employ LPIPS, which is known to correlate well with human
visual perception, to capture global feature discrepancies and
detect quality anomalies without requiring manual region
definitions. Specifically, we compute LPIPS between an
original image and a target image by extracting deep feature
maps from a pre-trained network (e.g., VGG16) [6,7].

In this study, we employ the LPIPS (Learned Perceptual
Image Patch Similarity) metric proposed by Zhang et al. [6] to
quantitatively evaluate perceptual similarity. Equation (1)
represents the perceptual distance in LPIPS, quantifying the
visual similarity between two images in a human perception

[6].

Let y;,, denote the unit-normalized deep feature vector at

spatial location (h, w) in the I-th layer for image x, and y;,,,
for the corresponding location in reference image x, [6]. H,
and W, represent the height and width of the feature map at
layer [, and w; is a learned per-channel weight vector that
modulates the relative contribution of each channel. The
perceptual discrepancy between x and x, is then computed as
the spatial average of the weighted squared 1, distance
between feature vectors, aggregated over all spatial positions
and summed across selected layers [6].
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This formulation yields a single scalar distance reflecting
perceptual similarity, where lower values indicate closer
visual resemblance. By aggregating differences across
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multiple feature layers with learned channel weighting, LPIPS
captures human-like judgments of image quality and shape
variation more robustly than pixel- or structure-based metrics.

III. PERFORMANCE EVALUATION AND RESULT ANALYSIS

To validate the performance of our product's visual quality
evaluation, we conducted a performance assessment using a
subset of the MVTec AD (Anomaly Detection) dataset, a
public dataset for industrial defect detection [8,9]. The
MVTec AD dataset consists of high-resolution images that
include various shape and surface defects that can occur in real
manufacturing environments [8,9]. For each product, both
normal images and various types of abnormal (defective)
images are provided.

This study compares the performance of three
representative image similarity metrics used in automated
visual quality inspection: LPIPS, SSIM, and PSNR [5,6].
These algorithms produce scores in different units LPIPS and
SSIM yield unitless values in [0,1], whereas PSNR is
expressed in decibels (dB).

LPIPS represents a learned perceptual distance, with lower
values indicating greater visual similarity; SSIM measures
structural similarity, where values closer to one denote higher
likeness; and PSNR is based on pixel-wise error, with larger
values corresponding to better fidelity. Although the raw
scales differ, we normalize their outputs by computing, for
each algorithm, the proportions of Normal, Warning, and
Defect classifications along with the sensitivity, thereby
enabling a consistent, comparative assessment of their
anomaly detection performance.
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Fig. 1. Heatmaps of visual similarity metrics on the Toothbrush and Bottle

test samples: comparison of Normal, Warning, and Defect classification
ratios for LPIPS, SSIM, and PSNR.
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As shown in Figure 1, we provide example images for the
Toothbrush and Bottle classes, including both defect-free
(Normal) and defective (Defect) samples, alongside the
corresponding heatmaps generated by LPIPS, SSIM, and
PSNR. For each class, the left side presents a clean and a
defective image pair, while the right side displays the
heatmaps from the three metrics. These heatmaps visualize
how each algorithm distributes its outputs into Normal,
Warning, and Defect categories for the given samples.

Table I summarizes the average results measured for each
algorithm on the Bottle and Toothbrush datasets, comparing
them based on three classification ratios: Normal, Warning,
and Defect. For each class, the analysis was performed using
one reference normal image and three test images (including
defective examples) to enable comparative evaluation.

Experimental results show that while SSIM demonstrated
the highest anomaly detection rate with a sensitivity of 48.7%
on the Bottle dataset, this high rate implies a potential for over-
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sensitivity and a high error rate on images that are actually
Normal. Indeed, SSIM's Normal ratio was 53.6%, which is
significantly lower than LPIPS (80.4%) and PSNR (79.8%),
indicating a higher likelihood of misclassifying normal
images as defective. This is because SSIM is highly sensitive
to structural similarity, and minor surface or lighting changes
can cause it to be classified as Defect. Although PSNR
produces overall Normal/Defect patterns comparable to
LPIPS, its low sensitivity can delay the detection of early
anomalies, and its pixel-wise error focus limits its ability to
reflect subtle, perceptually meaningful variations.

TABLE L. PERFORMANCE EVALUATION OF SIMILARITY MEASURES ON
BOTTLE AND TOOTHBRUSH DATASET

Algo | Dataset | Score | Normal | Warning | Defect | Sensitivity

risms (%) (%) (%) (%)

LPIPS bottle 0.15 80.4 11.3 8.3 30.1
brush 1o 15 | 894 5.7 49 163
tooth

PSNR bottle 25.7 79.8 11.3 8.9 17
brush
tooth 28.0 89.1 5.8 5 9.2

SSIM bottle 0.85 53.6 10.7 35.7 48.7
brush 156 | 761 338 20.1 25.1
tooth

In contrast, LPIPS maintained a relatively low sensitivity
(30.1%) while recording a high Normal classification
accuracy. This confirms that in practical applications, LPIPS
can provide stable detection performance while reducing
over-detection. LPIPS is evaluated as a more reliable
algorithm for practical defect detection because it reflects
perceptual quality differences rather than a single numerical
error value.

IV. CONCLUSION

This study evaluated three image similarity metrics LPIPS,
SSIM, and PSNR for post-processing quality inspection of
irregular-shaped additively manufactured products. By
normalizing their outputs into comparable classification ratios
and sensitivity, we identified distinct trade-offs: SSIM tended
to be over-sensitive, leading to frequent false positives, while
PSNR’s low sensitivity risked missing subtle early defects.

In contrast, LPIPS achieved a favorable balance,
delivering high normal classification accuracy with moderate
sensitivity and capturing perceptually meaningful differences
without relying on predefined ROIs or retraining. These
characteristics lead to LPIPS being evaluated as the best
candidate among the tested metrics for real-world automated
visual defect inspection in AM post-processing environments.

FUTURE WORK

To facilitate practical on-site deployment of the LPIPS
inspection algorithm, future work will evaluate its
performance on real-world datasets encompassing irregularly
shaped AM parts under diverse process conditions. Building
on these evaluations, we will pursue a hybrid approach that
integrates LPIPS with traditional similarity metrics such as
SSIM and PSNR. Under the integrated approach, SSIM and
PSNR will first perform coarse alignment and global contrast
assessment, after which LPIPS will provide fine-grained
perceptual sensitivity to surface defects. We anticipate that
this multi-metric strategy will enhance algorithmic
consistency and reliability, ultimately yielding a robust and
practical solution for real-world quality inspection.
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