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Abstract—Additive Manufacturing (AM) enables the 
production of parts with irregular shapes, where variations in 
geometry, size, material, and color make it difficult to perform 
consistent quality inspection using conventional rule-based 
methods. In particular, each product often requires a different 
baseline, and repeated data collection, labeling, and training are 
needed posing significant limitations for real-time inspection 
systems. To address this, we apply the Learned Perceptual 
Image Patch Similarity (LPIPS), which models human visual 
perception and can identify perceptual differences without 
repeated learning. We compare its performance with traditional 
similarity metrics such as Structural Similarity Index (SSIM) 
and Peak Signal-to-Noise Ratio ((PSNR). Experimental results 
show that the proposed LPIPS-based method can effectively 
detect perceptual differences across the entire image of 
irregular products without requiring predefined Regions of 
Interest (ROI), enabling flexible and reliable quality evaluation 
across various product types without the need for additional 
retraining. 
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I. INTRODUCTION 
Additive Manufacturing (AM) enables the fabrication of 

highly complex and customized geometries that are 
impractical with traditional manufacturing methods. However, 
to achieve the required surface quality and mechanical 
integrity, precise post-processing and the associated quality 
inspection are indispensable [1–3]. In particular, the enhanced 
design freedom of AM parts amplifies the need for accurate, 
non-destructive evaluation during this stage. Moreover, mass 
customization has introduced a vast array of part geometries, 
sizes, materials, and colors. Conventional inspection systems 
relying on predefined “normal” baselines struggle with this 
diversity. Each new variant requires fresh data collection, 
manual labeling, and model retraining, resulting in significant 
time and resource overhead [4]. 

This challenge calls for a paradigm shift toward novel 
inspection technologies capable of emulating human-like 
cognitive perception to identify and rapidly quantify visually 
salient discrepancies. In the context of AM post-processing, 
such a flexible, AI-based inspection method has emerged as a 
crucial factor for enhancing production quality and advancing 
automation. 

Previous studies have predominantly relied on traditional 
pixel-based similarity metrics like PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity Index) to detect 
shape anomalies or visual discrepancies [5]. However, these 
techniques have a limitation: their similarity values fluctuate 
significantly with even minor changes in a product's position 
or angle, making them unsuitable for unaligned, irregularly 
shaped products.  

Consequently, these methods have been restricted to 
products with uniform shapes or required pre-defining a 
Region of Interest (ROI) or mask for comparison. In real-
world AM environments, where a continuous stream of 
irregularly shaped products is introduced, setting an ROI is 
inherently difficult, and repeatable shape-based comparisons 
are often impossible. Therefore, there is a clear need for an 
approach that can quickly and automatically quantify 
similarity at a global image level without requiring pre-
defined areas. 

II. VISUAL QUALITY INSPECTION ALGORITHM 
In this paper, to automatically evaluate the quality of 

irregularly shaped additively manufactured products, we 
measure perceptual feature differences over entire images 
using the Learned Perceptual Image Patch Similarity (LPIPS) 
score and compare its behavior with conventional similarity 
metrics such as SSIM and PSNR [5,6].  

Existing quality evaluation methods often depend on 
predefined reference datasets or standardized shape criteria, 
which limits their consistency and generalization for diverse, 
non-aligned shapes. To address these shortcomings, we 
employ LPIPS, which is known to correlate well with human 
visual perception, to capture global feature discrepancies and 
detect quality anomalies without requiring manual region 
definitions. Specifically, we compute LPIPS between an 
original image and a target image by extracting deep feature 
maps from a pre-trained network (e.g., VGG16) [6,7].  

In this study, we employ the LPIPS (Learned Perceptual 
Image Patch Similarity) metric proposed by Zhang et al. [6] to 
quantitatively evaluate perceptual similarity. Equation (1) 
represents the perceptual distance in LPIPS, quantifying the 
visual similarity between two images in a human perception 
[6].  

Let 𝑦𝑦ℎ𝑤𝑤𝑙̂𝑙  denote the unit-normalized deep feature vector at 
spatial location (ℎ, 𝑤𝑤) in the 𝑙𝑙-th layer for image 𝑥𝑥, and 𝑦𝑦0ℎ𝑤𝑤𝑙̂𝑙  
for the corresponding location in reference image 𝑥𝑥0 [6]. 𝐻𝐻𝑙𝑙  
and 𝑊𝑊𝑙𝑙 represent the height and width of the feature map at 
layer 𝑙𝑙 , and 𝑤𝑤𝑙𝑙  is a learned per-channel weight vector that 
modulates the relative contribution of each channel. The 
perceptual discrepancy between 𝑥𝑥 and 𝑥𝑥0 is then computed as 
the spatial average of the weighted squared l2  distance 
between feature vectors, aggregated over all spatial positions 
and summed across selected layers [6]. 

 𝑑𝑑(𝑥𝑥, 𝑥𝑥0) = ∑ 1
𝐻𝐻𝑙𝑙𝑊𝑊𝑙𝑙𝑙𝑙 ∑ |𝑤𝑤𝑙𝑙 ⊙ (𝑦𝑦ℎ𝑤𝑤𝑙̂𝑙 − 𝑦𝑦0ℎ𝑤𝑤𝑙̂𝑙 ) |22ℎ,𝑤𝑤  () 

This formulation yields a single scalar distance reflecting 
perceptual similarity, where lower values indicate closer 
visual resemblance. By aggregating differences across 
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multiple feature layers with learned channel weighting, LPIPS 
captures human-like judgments of image quality and shape 
variation more robustly than pixel- or structure-based metrics. 

III. PERFORMANCE EVALUATION AND RESULT ANALYSIS 
To validate the performance of our product's visual quality 

evaluation, we conducted a performance assessment using a 
subset of the MVTec AD (Anomaly Detection) dataset, a 
public dataset for industrial defect detection [8,9]. The 
MVTec AD dataset consists of high-resolution images that 
include various shape and surface defects that can occur in real 
manufacturing environments [8,9]. For each product, both 
normal images and various types of abnormal (defective) 
images are provided. 

This study compares the performance of three 
representative image similarity metrics used in automated 
visual quality inspection: LPIPS, SSIM, and PSNR [5,6]. 
These algorithms produce scores in different units LPIPS and 
SSIM yield unitless values in [0,1], whereas PSNR is 
expressed in decibels (dB).  

LPIPS represents a learned perceptual distance, with lower 
values indicating greater visual similarity; SSIM measures 
structural similarity, where values closer to one denote higher 
likeness; and PSNR is based on pixel-wise error, with larger 
values corresponding to better fidelity. Although the raw 
scales differ, we normalize their outputs by computing, for 
each algorithm, the proportions of Normal, Warning, and 
Defect classifications along with the sensitivity, thereby 
enabling a consistent, comparative assessment of their 
anomaly detection performance. 

 
Fig. 1. Heatmaps of visual similarity metrics on the Toothbrush and Bottle 

test samples: comparison of Normal, Warning, and Defect classification 
ratios for LPIPS, SSIM, and PSNR. 

As shown in Figure 1, we provide example images for the 
Toothbrush and Bottle classes, including both defect-free 
(Normal) and defective (Defect) samples, alongside the 
corresponding heatmaps generated by LPIPS, SSIM, and 
PSNR. For each class, the left side presents a clean and a 
defective image pair, while the right side displays the 
heatmaps from the three metrics. These heatmaps visualize 
how each algorithm distributes its outputs into Normal, 
Warning, and Defect categories for the given samples. 

Table I summarizes the average results measured for each 
algorithm on the Bottle and Toothbrush datasets, comparing 
them based on three classification ratios: Normal, Warning, 
and Defect. For each class, the analysis was performed using 
one reference normal image and three test images (including 
defective examples) to enable comparative evaluation. 

Experimental results show that while SSIM demonstrated 
the highest anomaly detection rate with a sensitivity of 48.7% 
on the Bottle dataset, this high rate implies a potential for over-

sensitivity and a high error rate on images that are actually 
Normal. Indeed, SSIM's Normal ratio was 53.6%, which is 
significantly lower than LPIPS (80.4%) and PSNR (79.8%), 
indicating a higher likelihood of misclassifying normal 
images as defective. This is because SSIM is highly sensitive 
to structural similarity, and minor surface or lighting changes 
can cause it to be classified as Defect. Although PSNR 
produces overall Normal/Defect patterns comparable to 
LPIPS, its low sensitivity can delay the detection of early 
anomalies, and its pixel-wise error focus limits its ability to 
reflect subtle, perceptually meaningful variations. 

TABLE I.  PERFORMANCE EVALUATION OF SIMILARITY MEASURES ON 
BOTTLE AND TOOTHBRUSH DATASET 

Algo 
risms 

Dataset Score Normal 
(%) 

Warning 
(%) 

Defect 
(%) 

Sensitivity 
(%) 

LPIPS bottle 0.15 80.4 11.3 8.3 30.1 
brush 
tooth 0.15 89.4 5.7 4.9 16.3 

PSNR bottle 25.7 79.8 11.3 8.9 17 
brush 
tooth 28.0 89.1 5.8 5 9.2 

SSIM bottle 0.85 53.6 10.7 35.7 48.7 
brush 
tooth 0.8 76.1 3.8 20.1 25.1 

 

In contrast, LPIPS maintained a relatively low sensitivity 
(30.1%) while recording a high Normal classification 
accuracy. This confirms that in practical applications, LPIPS 
can provide stable detection performance while reducing 
over-detection. LPIPS is evaluated as a more reliable 
algorithm for practical defect detection because it reflects 
perceptual quality differences rather than a single numerical 
error value. 

IV. CONCLUSION 
This study evaluated three image similarity metrics LPIPS, 

SSIM, and PSNR for post-processing quality inspection of 
irregular-shaped additively manufactured products. By 
normalizing their outputs into comparable classification ratios 
and sensitivity, we identified distinct trade-offs: SSIM tended 
to be over-sensitive, leading to frequent false positives, while 
PSNR’s low sensitivity risked missing subtle early defects.  

In contrast, LPIPS achieved a favorable balance, 
delivering high normal classification accuracy with moderate 
sensitivity and capturing perceptually meaningful differences 
without relying on predefined ROIs or retraining. These 
characteristics lead to LPIPS being evaluated as the best 
candidate among the tested metrics for real-world automated 
visual defect inspection in AM post-processing environments. 

FUTURE WORK 
To facilitate practical on-site deployment of the LPIPS 

inspection algorithm, future work will evaluate its 
performance on real-world datasets encompassing irregularly 
shaped AM parts under diverse process conditions. Building 
on these evaluations, we will pursue a hybrid approach that 
integrates LPIPS with traditional similarity metrics such as 
SSIM and PSNR. Under the integrated approach, SSIM and 
PSNR will first perform coarse alignment and global contrast 
assessment, after which LPIPS will provide fine-grained 
perceptual sensitivity to surface defects. We anticipate that 
this multi-metric strategy will enhance algorithmic 
consistency and reliability, ultimately yielding a robust and 
practical solution for real-world quality inspection. 
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