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Abstract—The growing demand for personalized energy 
management and smart city services has highlighted the 
importance of accurately understanding household behavioral 
patterns through non-intrusive methods. This study proposes a 
time-interval aggregation algorithm that infers sleep and wake 
time patterns from multi-source smart meter data, including 
electricity, cold water, and hot water usage. The method 
addresses challenges such as baseline consumption noise and 
irregular usage behaviors by applying threshold-based filtering, 
interval merging, and temporal frequency analysis. It consists of 
six structured steps: identifying active usage hours, constructing 
continuous intervals, selecting frequently recurring intervals, 
integrating multi-source data, inferring sleep–wake times using 
behavioral heuristics, and classifying weekday versus holiday 
patterns. Validation using real-world residential datasets 
demonstrates the algorithm’s effectiveness in consistently 
estimating circadian behavior without requiring wearable 
sensors or intrusive monitoring. The results show potential for 
enhancing energy efficiency services, carbon reduction 
strategies, and personalized lifestyle analytics within smart grid 
environments.  
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I. INTRODUCTION  
In recent years, the demand for non-intrusive methods to 

monitor residents' daily activity rhythms has increased, 
especially in smart residential systems. Among such patterns, 
sleep and wake intervals are closely linked to personal health, 
energy efficiency, and responsive welfare services. 
Traditional approaches often rely on wearable devices or 
dedicated sensors, which present limitations in terms of user 
acceptance, installation costs, and privacy concerns. 
Electricity consumption data from smart meters has been 
proposed as a potential data for inferring resident activity 
states. However, electrical usage alone does not capture the 
full spectrum of daily life, particularly due to background 
loads such as refrigerators or routers that remain active even 
during sleep. In contrast, water and hot water usage patterns 
exhibit clearer on/off dynamics and thus offer stronger signals 
for behavioral transitions like sleep onset and morning 
routines. This study proposes a novel algorithm that integrates 
hourly electricity, water, and hot water usage logs to estimate 
the sleep and wake intervals of individual households in multi-
unit residential complexes. By analyzing deviations from 
household-specific baselines and incorporating utility-specific 
thresholds, the method achieves personalized, accurate, and 
non-intrusive inference of rest-activity cycles. The algorithm 
is validated using real-world datasets and compared against 
electricity-only models to demonstrate performance gains. 

II. RELATED RESEARCHES 
Prior research on smart meter-based behavior inference 

has largely focused on electricity-only data, applying rule-
based or statistical models to identify activity zones[1,2]. 
High-resolution disaggregation of electricity usage has been 
used to detect appliance-level events, but this approach 
requires fine-grained data and computational overhead[3,4]. 
Water and hot water usage data remain underutilized in the 
context of behavioral inference, despite their potential to 
reflect human interactions with hygiene and cooking activities. 
In the healthcare domain, sleep estimation has traditionally 
relied on physiological sensors, such as actigraphy or 
polysomnography, which are accurate but impractical for 
large-scale deployment. Recently, ambient intelligence 
approaches have gained traction, exploring smart home data 
for passive health monitoring. However, integrating multiple 
utility data sources to infer behavioral patterns is still an 
emerging area. A comparison with prior work highlights key 
distinctions of our method. For instance, Lee et al. (2020) used 
hourly electricity data and moving average thresholds, but 
their approach could not differentiate passive loads from 
active behavior[5]. Zhang et al. (2021) employed smart plug-
level data and clustering methods to detect behavioral states, 
yet required high-resolution data and raised privacy concerns 
due to device-level monitoring[6]. Kim et al. (2022) utilized 
15-minute interval electricity readings with statistical 
smoothing, but their approach suffered from ambiguity during 
periods when residents used electricity passively, such as 
kitchen or bathroom lights during nighttime[7]. In contrast, 
our study introduces a tri-modal approach combining 
electricity, water, and hot water usage data, enabling more 
accurate state inference. By applying utility-specific 
thresholds and household-personalized baselines, our method 
avoids the pitfalls of electricity-only logic, offers interpretable 
results, and does not require intrusive sensors or device-level 
disaggregation. To our knowledge, this is the first large-scale 
non-intrusive method that fuses multiple utility sources to 
infer sleep-wake behavior in urban apartments. 

III. ALGORITHM FOR INFERRING SLEEP AND WAKE TIMES 
USING HOURLY MULTI-SOURCE ENERGY DATA 

This study proposes a data-driven, non-intrusive algorithm 
to infer daily sleep and wake-up times for individual 
households based on hourly usage patterns from electricity, 
hot water, and cold water sources. The algorithm is designed 
to process real-world smart meter data in a multi-step pipeline 
that captures behavioral cues without requiring sensors or user 
intervention. The procedure comprises six core stages: 
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A. Step 1: Identification of Active Hours Based on Usage 
Thresholds 
For each energy type (electricity, hot water, cold water), 

hourly usage is compared against the daily average usage of 
the corresponding household. Hours with usage exceeding the 
daily mean are retained as active hours, representing 
meaningful interactions with household systems beyond 
baseline consumption (e.g., appliance standby load). 

B. Step 2: Construction of Continuous Usage Intervals 
Consecutive active hours are merged to form usage 

intervals, each characterized by a start time, end time, and 
duration. These intervals are assumed to represent discrete 
user activities or energy events (e.g., showering, cooking). 

C. Step 3: Frequent Interval Selection Based on Temporal 
Repetition 
For each household, the frequency of each unique time 

interval (e.g., 07:00–08:00) is calculated over the entire 
observation period. Intervals that appear on ≥50% of the total 
observed days are retained as representative patterns. If the 
number of qualified intervals falls short of a predefined 
minimum, the most frequently occurring intervals are added 
to supplement the set. 

D. Step 4: Merging of Intervals Across Energy Sources 
All usage intervals from the three sources are merged by 

time. Overlapping or identical time ranges across sources are 
consolidated into unified records, and the associated energy 
types are aggregated (e.g., "Electricity, Hot Water"). This step 
creates a single daily timeline of household activity. 

E. Step 5: Inference of Sleep and Wake Times 
Using the merged multi-source timeline, the algorithm 

infers sleep and wake-up times based on behavioral heuristics: 

• Sleep Time: The most recent energy usage ending 
between 00:00–04:00, or between 18:00–23:00 of the 
previous day, is considered the likely sleep onset. 
Priority is given to intervals involving hot or cold 
water usage, reflecting typical pre-sleep hygiene 
routines. 

• Wake-Up Time: The earliest energy usage starting 
between 05:00–12:00 of the current day is considered 
the wake-up time. Again, water-based activities (e.g., 
morning shower or cooking) are prioritized over 
electricity alone. 

F. Step 6: Classifying Weekday/Holiday Sleep-Wake Time 
Patterns 
To summarize long-term behavioral tendencies, the 

algorithm computes the mode (most frequent value) of the 
inferred sleep and wake times separately for weekdays and 
holidays. Along with the mode values, the algorithm records 
the frequency of occurrence and the number of valid days. 
This output enables statistical characterization of household-
level lifestyle patterns and supports comparative or cluster-
based analysis in subsequent applications. 

IV. CASE STUDY 
The dataset utilized in this study was collected from smart 

meters installed across multiple households within a high-
density urban residential complex in South Korea. The smart 
meters recorded hourly consumption data for three energy 
types—electricity (kWh), hot water (liters), and cold water 

(liters). Each data record includes a household identifier 
(meter_id), the corresponding date (str_date), start and end 
times (start_time, end_time) indicating the period of 
consumption activity, a calculated duration of use (duration), 
and an energy-type label (used_energy) identifying whether 
the consumption pertained to electricity (e), hot water (hw), or 
cold water (cw). The raw datasets were initially stored 
separately for each energy type and later unified through 
interval merging procedures, as described in Section III. The 
final integrated dataset encompasses 467 households, 
comprising approximately 381,168 hourly energy usage 
records collected over a 34-day observation period from May 
18, 2023, to June 20, 2023. The data are fully anonymized to 
protect the privacy of individual households, and no 
personally identifiable information is retained. All data 
processing and analysis were conducted in compliance with 
ethical standards and institutional data usage policies. This 
section presents the step-by-step application of the proposed 
algorithm to the real-world dataset, illustrating how each stage 
contributes to the inference of sleep and wake times from 
multi-source hourly energy data.  

A. Step 1: Identification of Active Hours Based on Usage 
Thresholds 
For each household and energy type (electricity, cold 

water, hot water), the hourly usage on a given day is compared 
to the average usage at the same hour computed across all days. 
Hours with above-average usage are marked as active. Fig. 1, 
Fig. 2, and Fig. 3 illustrate the hourly energy usage of a 
randomly selected household on May 19, 2023, for electricity, 
cold water, and hot water respectively. 

 
Fig. 1. Hourly energy usage of a randomly selected household for 

electricity 

 
Fig. 2. Hourly energy usage of a randomly selected household for cold 

water 
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Fig. 3. Hourly energy usage of a randomly selected household for hot 

water 

In each subfigure, red bars represent hours in which the 
energy consumption exceeded the corresponding hourly 
average across all observed days, while blue bars indicate 
hours with below-average usage. The gray dashed line reflects 
the mean hourly usage computed for each energy type over 
the entire observation period. These visualizations enable 
temporal anomaly detection and facilitate behavioral 
interpretation by comparing actual consumption on a given 
day to the normative hourly patterns established across the 
dataset. 

B. Step 2: Construction of Continuous Usage Intervals 
Consecutive active hours are merged to form usage 

intervals, each characterized by a start time, end time, and 
duration. These intervals are assumed to represent discrete 
user activities or energy events (e.g., showering, cooking). Fig. 
4, Fig. 5, and Fig. 6 illustrates the constructed time ranges 
during which energy usage continuously exceeded the 
corresponding hourly average, across multiple days, for a 
randomly selected household. The visualizations capture the 
temporal dynamics of energy consumption for three energy 
types—electricity, cold water, and hot water. Each horizontal 
bar represents a contiguous time interval on a given date 
during which the usage for that specific energy type remained 
above the mean for the same hour calculated across the entire 
observation period. The Y-axis represents the date, and the X-
axis corresponds to the hour of the day. The annotated time 
ranges within each bar (e.g., “9–11”) indicate the start and end 
hour of active usage periods. This visualization enables the 
identification of temporal usage patterns that persist or 
fluctuate day by day. For example, sustained usage during late 
evening hours (e.g., 21:00–23:00) or consistent morning 
consumption (e.g., 6:00–9:00) may indicate routine behavior 
or anomalies depending on the expected baseline. 

 
Fig. 4. The constructed time ranges during which electicity usage 

continuously exceeded the corresponding hourly average, across multiple 
days, for a randomly selected household 

 
Fig. 5. The constructed time ranges during which cold water usage 

continuously exceeded the corresponding hourly average, across multiple 
days, for a randomly selected household 

 
Fig. 6. The constructed time ranges during which hot water usage 

continuously exceeded the corresponding hourly average, across multiple 
days, for a randomly selected household 

C. Step 3: Frequent Interval Selection Based on Temporal 
Repetition 
Step 3 identifies frequent usage intervals by examining 

recurring time segments across days. Fig. 7, Fig. 8, and Fig. 9 
presents daily active usage intervals of a randomly selected 
household for electricity, cold water, and hot water. For 
example, electricity is frequently used from 21:00 to 23:00, 
while, cold water and hot water usage is concentrated around 
9:00 and 22:00. These recurring intervals are candidates for 
defining typical behavioral routines. 

 
Fig. 7. Daily active usage intervals of a randomly selected household for 

electricity
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Fig. 8. Daily active usage intervals of a randomly selected household for 
cold water 

 
Fig. 9. Daily active usage intervals of a randomly selected household for 

hot water 

D. Step 4: Merging of Intervals Across Energy Sources 
In this step, the goal is to identify overlapping or 

temporally adjacent usage windows across different energy 
sources. By aligning the intervals from electricity, cold water, 
and hot water usage, it becomes possible to infer behaviorally 
meaningful activity segments, such as morning routines or 
evening household activities. Fig. 10 demonstrates how 
merging intervals provides a holistic view of daily energy 
behaviors. For example, certain time blocks (e.g., 6–9 AM or 
20–23 PM) show consistent usage across multiple energy 
types, which may correspond to regular household routines. 

 
Fig. 10. The energy usage intervals for electricity, cold water, and hot water 

across multiple days, focusing on a single household 

E. Step 5: Inference of Sleep and Wake Times 
Table 1 illustrates the results of inferring sleep and wake-

up times for a representative household, identified as meter ID 
S420010007392806. For each date, the algorithm estimated 
the household’s sleep time and wake-up time based on multi-
source energy usage data. Sleep time was determined by 
identifying the latest recorded end time of energy usage 
occurring either between 18:00–23:00 on the previous day or 
between 00:00–04:00 on the same day. Wake-up time was 
inferred from the earliest recorded start time of energy usage 
within the morning window of 05:00–12:00 on the same date. 
Along with the time values, the table records the type of 
energy source—electricity, cold water, or hot water—that was 
associated with the detected sleep and wake-up events. The 
holiday column distinguishes weekdays from holidays, 
enabling further lifestyle pattern comparisons. 

 

TABLE I.  SLEEP AND WAKE-UP TIMES FOR A REPRESENTATIVE 
HOUSEHOLD 

 
 

F. Step 6: Classifying Weekday/Holiday Sleep-Wake Time 
Patterns 
Fig. 11 presents the classified sleep and wake-up time 

patterns for a representative household (meter ID 
S420010007392806), differentiated between weekdays and 
holidays. The x-axis denotes the calendar date, explicitly 
labeled with "(W)" for weekdays and "(H)" for holidays to 
provide immediate visual distinction. By analyzing the 
distribution of points, it becomes evident that this household 
maintains relatively stable wake-up times across both 
weekdays and holidays, predominantly between 8:00 and 
10:00. In contrast, sleep times show greater variability, 
particularly on holidays, where later sleep time is observed 
more frequently. 

 
Fig. 11. The classified sleep and wake-up time patterns for a representative 

household 

V. CONCLUSIONS 
This study presented a non-intrusive method for 

estimating household behavioral lifestyle by leveraging multi-
source smart meter data, specifically electricity, hot water, and 
cold water usage logs. By designing a structured time-interval 
aggregation algorithm consisting of six core steps—including 
active hour identification, interval construction, temporal 
frequency filtering, cross-source interval merging, sleep–
wake time inference, and weekday/holiday pattern 
classification—the proposed framework enables interpretable 
and scalable behavioral profiling without requiring any direct 
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sensor installation or user intervention. In the future, we will 
evaluate the proposed method’s substantiality and reliability 
by validating the inferred patterns against ground-truth survey 
or sensor-based data to further confirm the reliability and 
generalizability of the method. 
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