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Abstract—The growing demand for personalized energy
management and smart city services has highlighted the
importance of accurately understanding household behavioral
patterns through non-intrusive methods. This study proposes a
time-interval aggregation algorithm that infers sleep and wake
time patterns from multi-source smart meter data, including
electricity, cold water, and hot water usage. The method
addresses challenges such as baseline consumption noise and
irregular usage behaviors by applying threshold-based filtering,
interval merging, and temporal frequency analysis. It consists of
six structured steps: identifying active usage hours, constructing
continuous intervals, selecting frequently recurring intervals,
integrating multi-source data, inferring sleep—wake times using
behavioral heuristics, and classifying weekday versus holiday
patterns. Validation using real-world residential datasets
demonstrates the algorithm’s effectiveness in consistently
estimating circadian behavior without requiring wearable
sensors or intrusive monitoring. The results show potential for
enhancing energy efficiency services, carbon reduction
strategies, and personalized lifestyle analytics within smart grid
environments.
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L INTRODUCTION

In recent years, the demand for non-intrusive methods to
monitor residents' daily activity rhythms has increased,
especially in smart residential systems. Among such patterns,
sleep and wake intervals are closely linked to personal health,
energy efficiency, and responsive welfare services.
Traditional approaches often rely on wearable devices or
dedicated sensors, which present limitations in terms of user
acceptance, installation costs, and privacy concerns.
Electricity consumption data from smart meters has been
proposed as a potential data for inferring resident activity
states. However, electrical usage alone does not capture the
full spectrum of daily life, particularly due to background
loads such as refrigerators or routers that remain active even
during sleep. In contrast, water and hot water usage patterns
exhibit clearer on/off dynamics and thus offer stronger signals
for behavioral transitions like sleep onset and morning
routines. This study proposes a novel algorithm that integrates
hourly electricity, water, and hot water usage logs to estimate
the sleep and wake intervals of individual households in multi-
unit residential complexes. By analyzing deviations from
household-specific baselines and incorporating utility-specific
thresholds, the method achieves personalized, accurate, and
non-intrusive inference of rest-activity cycles. The algorithm
is validated using real-world datasets and compared against
electricity-only models to demonstrate performance gains.
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II. RELATED RESEARCHES

Prior research on smart meter-based behavior inference
has largely focused on electricity-only data, applying rule-
based or statistical models to identify activity zones[1,2].
High-resolution disaggregation of electricity usage has been
used to detect appliance-level events, but this approach
requires fine-grained data and computational overhead[3.,4].
Water and hot water usage data remain underutilized in the
context of behavioral inference, despite their potential to
reflect human interactions with hygiene and cooking activities.
In the healthcare domain, sleep estimation has traditionally
relied on physiological sensors, such as actigraphy or
polysomnography, which are accurate but impractical for
large-scale deployment. Recently, ambient intelligence
approaches have gained traction, exploring smart home data
for passive health monitoring. However, integrating multiple
utility data sources to infer behavioral patterns is still an
emerging area. A comparison with prior work highlights key
distinctions of our method. For instance, Lee et al. (2020) used
hourly electricity data and moving average thresholds, but
their approach could not differentiate passive loads from
active behavior[5]. Zhang et al. (2021) employed smart plug-
level data and clustering methods to detect behavioral states,
yet required high-resolution data and raised privacy concerns
due to device-level monitoring[6]. Kim et al. (2022) utilized
15-minute interval electricity readings with statistical
smoothing, but their approach suffered from ambiguity during
periods when residents used electricity passively, such as
kitchen or bathroom lights during nighttime[7]. In contrast,
our study introduces a tri-modal approach combining
electricity, water, and hot water usage data, enabling more
accurate state inference. By applying utility-specific
thresholds and household-personalized baselines, our method
avoids the pitfalls of electricity-only logic, offers interpretable
results, and does not require intrusive sensors or device-level
disaggregation. To our knowledge, this is the first large-scale
non-intrusive method that fuses multiple utility sources to
infer sleep-wake behavior in urban apartments.

III.  ALGORITHM FOR INFERRING SLEEP AND WAKE TIMES

USING HOURLY MULTI-SOURCE ENERGY DATA

This study proposes a data-driven, non-intrusive algorithm
to infer daily sleep and wake-up times for individual
households based on hourly usage patterns from electricity,
hot water, and cold water sources. The algorithm is designed
to process real-world smart meter data in a multi-step pipeline
that captures behavioral cues without requiring sensors or user
intervention. The procedure comprises six core stages:
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A. Step 1: Identification of Active Hours Based on Usage
Thresholds

For each energy type (electricity, hot water, cold water),
hourly usage is compared against the daily average usage of
the corresponding household. Hours with usage exceeding the
daily mean are retained as active hours, representing
meaningful interactions with household systems beyond
baseline consumption (e.g., appliance standby load).

B. Step 2: Construction of Continuous Usage Intervals

Consecutive active hours are merged to form usage
intervals, each characterized by a start time, end time, and
duration. These intervals are assumed to represent discrete
user activities or energy events (e.g., showering, cooking).

C. Step 3: Frequent Interval Selection Based on Temporal

Repetition

For each household, the frequency of each unique time
interval (e.g., 07:00 - 08:00) is calculated over the entire
observation period. Intervals that appear on =50% of the total
observed days are retained as representative patterns. If the
number of qualified intervals falls short of a predefined
minimum, the most frequently occurring intervals are added
to supplement the set.

D. Step 4: Merging of Intervals Across Energy Sources

All usage intervals from the three sources are merged by
time. Overlapping or identical time ranges across sources are
consolidated into unified records, and the associated energy
types are aggregated (e.g., "Electricity, Hot Water"). This step
creates a single daily timeline of household activity.

E. Step 5: Inference of Sleep and Wake Times

Using the merged multi-source timeline, the algorithm
infers sleep and wake-up times based on behavioral heuristics:

e Sleep Time: The most recent energy usage ending
between 00:00-04:00, or between 18:00-23:00 of the
previous day, is considered the likely sleep onset.
Priority is given to intervals involving hot or cold
water usage, reflecting typical pre-sleep hygiene

routines.

Wake-Up Time: The earliest energy usage starting
between 05:00—12:00 of the current day is considered
the wake-up time. Again, water-based activities (e.g.,
morning shower or cooking) are prioritized over
electricity alone.

F. Step 6: Classifying Weekday/Holiday Sleep-Wake Time
Patterns

To summarize long-term behavioral tendencies, the
algorithm computes the mode (most frequent value) of the
inferred sleep and wake times separately for weekdays and
holidays. Along with the mode values, the algorithm records
the frequency of occurrence and the number of valid days.
This output enables statistical characterization of household-
level lifestyle patterns and supports comparative or cluster-
based analysis in subsequent applications.

IV. CASE STUDY

The dataset utilized in this study was collected from smart
meters installed across multiple households within a high-
density urban residential complex in South Korea. The smart
meters recorded hourly consumption data for three energy
types—electricity (kWh), hot water (liters), and cold water
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(liters). Each data record includes a household identifier

(meter_id), the corresponding date (str_date), start and end
times (start time, end time) indicating the period of
consumption activity, a calculated duration of use (duration),
and an energy-type label (used_energy) identifying whether
the consumption pertained to electricity (e), hot water (hw), or
cold water (cw). The raw datasets were initially stored
separately for each energy type and later unified through
interval merging procedures, as described in Section III. The
final integrated dataset encompasses 467 households,
comprising approximately 381,168 hourly energy usage
records collected over a 34-day observation period from May
18, 2023, to June 20, 2023. The data are fully anonymized to
protect the privacy of individual households, and no
personally identifiable information is retained. All data
processing and analysis were conducted in compliance with
ethical standards and institutional data usage policies. This
section presents the step-by-step application of the proposed
algorithm to the real-world dataset, illustrating how each stage
contributes to the inference of sleep and wake times from
multi-source hourly energy data.

A. Step 1: Identification of Active Hours Based on Usage
Thresholds

For each household and energy type (electricity, cold
water, hot water), the hourly usage on a given day is compared
to the average usage at the same hour computed across all days.
Hours with above-average usage are marked as active. Fig. 1,
Fig. 2, and Fig. 3 illustrate the hourly energy usage of a
randomly selected household on May 19, 2023, for electricity,
cold water, and hot water respectively.
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Fig. 1. Hourly energy usage of a randomly selected household for
electricity
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Fig. 2. Hourly energy usage of a randomly selected household for cold
water



Hot Water Usage on 2023-05-19 (Red: Above Mean)
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Fig. 3. Hourly energy usage of a randomly selected household for hot
water

In each subfigure, red bars represent hours in which the
energy consumption exceeded the corresponding hourly
average across all observed days, while blue bars indicate
hours with below-average usage. The gray dashed line reflects
the mean hourly usage computed for each energy type over
the entire observation period. These visualizations enable
temporal anomaly detection and facilitate behavioral
interpretation by comparing actual consumption on a given
day to the normative hourly patterns established across the
dataset.

B. Step 2: Construction of Continuous Usage Intervals

Consecutive active hours are merged to form usage
intervals, each characterized by a start time, end time, and
duration. These intervals are assumed to represent discrete

user activities or energy events (e.g., showering, cooking). Fig.

4, Fig. 5, and Fig. 6 illustrates the constructed time ranges
during which energy usage continuously exceeded the
corresponding hourly average, across multiple days, for a
randomly selected household. The visualizations capture the
temporal dynamics of energy consumption for three energy
types—electricity, cold water, and hot water. Each horizontal
bar represents a contiguous time interval on a given date
during which the usage for that specific energy type remained
above the mean for the same hour calculated across the entire
observation period. The Y-axis represents the date, and the X-
axis corresponds to the hour of the day. The annotated time
ranges within each bar (e.g., “9—11”) indicate the start and end
hour of active usage periods. This visualization enables the
identification of temporal usage patterns that persist or
fluctuate day by day. For example, sustained usage during late
evening hours (e.g., 21:00-23:00) or consistent morning
consumption (e.g., 6:00-9:00) may indicate routine behavior
or anomalies depending on the expected baseline.
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Fig. 4. The constructed time ranges during which electicity usage
continuously exceeded the corresponding hourly average, across multiple
days, for a randomly selected household
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Fig. 5. The constructed time ranges during which cold water usage
continuously exceeded the corresponding hourly average, across multiple
days, for a randomly selected household
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Fig. 6. The constructed time ranges during which hot water usage
continuously exceeded the corresponding hourly average, across multiple
days, for a randomly selected household

C. Step 3: Frequent Interval Selection Based on Temporal

Repetition

Step 3 identifies frequent usage intervals by examining
recurring time segments across days. Fig. 7, Fig. 8, and Fig. 9
presents daily active usage intervals of a randomly selected
household for electricity, cold water, and hot water. For
example, electricity is frequently used from 21:00 to 23:00,
while, cold water and hot water usage is concentrated around
9:00 and 22:00. These recurring intervals are candidates for
defining typical behavioral routines.

[Flectriity) Consecutive: Time Ranges by str_date for Meter 12 5420010007392805

2023 04 20 bac0T0.
15 acuco B e
S ™ s

(344
1

.

] [ e st

B s

e @ o

"

o e

2 s pEs
203305 13 0ateco J [ s

Fig. 7. Daily active usage intervals of a randomly selected household for
electricity
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Daily active usage intervals of a randomly selected household for
cold water
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Fig. 9.

Daily active usage intervals of a randomly selected household for
hot water

D. Step 4: Merging of Intervals Across Energy Sources

In this step, the goal is to identify overlapping or
temporally adjacent usage windows across different energy
sources. By aligning the intervals from electricity, cold water,
and hot water usage, it becomes possible to infer behaviorally
meaningful activity segments, such as morning routines or
evening household activities. Fig. 10 demonstrates how
merging intervals provides a holistic view of daily energy
behaviors. For example, certain time blocks (e.g., 6-9 AM or
20-23 PM) show consistent usage across multiple energy
types, which may correspond to regular household routines.
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Fig. 10. The energy usage intervals for electricity, cold water, and hot water
across multiple days, focusing on a single household

E. Step 5: Inference of Sleep and Wake Times

Table 1 illustrates the results of inferring sleep and wake-
up times for a representative household, identified as meter ID
S420010007392806. For each date, the algorithm estimated
the household’s sleep time and wake-up time based on multi-
source energy usage data. Sleep time was determined by
identifying the latest recorded end time of energy usage
occurring either between 18:00-23:00 on the previous day or
between 00:00-04:00 on the same day. Wake-up time was
inferred from the earliest recorded start time of energy usage
within the morning window of 05:00—-12:00 on the same date.
Along with the time values, the table records the type of
energy source—electricity, cold water, or hot water—that was
associated with the detected sleep and wake-up events. The
holiday column distinguishes weekdays from holidays,
enabling further lifestyle pattern comparisons.

TABLE L SLEEP AND WAKE-UP TIMES FOR A REPRESENTATIVE

HOUSEHOLD

meter_id date sleep_date sleep_time sleep_time_energy wake_time wake_time_energy holiday
0 S420010007392806 2023.05-19 2023-05-19 o ow 9 cwe hw o
1 S420010007392806 2023.0520 20230520 3 e 9 ow 1
2 S420010007392808 2023.0521 20230521 1 ow [ e 1
3 S420010007392808 2023.05-22 2023-05-21 22 ewhw 9 ow 0
4 S420010007392806 20230523 20230522 22 cww 10 w 0
6 S420010007392808 2023.0524 2023-05-24 1 ow 9 w 0
§ S420010007392808 2023.0525 20230535 2 ow 9 ow 0
7 S420010007392805 20230527 20230527 4 e 10 cwhw 1
8 S420010007392806 2023.0528 20230528 2 e 9 o 1
9 S420010007392805 2023.05-28 20230520 4 e 10 w 1
10 S420010007392806 20230530 2023-05-30 1 ow 9 hw 0
11 S420010007392806 20230531 20230531 1 ow 9 ehw 0
12 S420010007392808 20230601 2023-06-01 1 ow 9 w 0
13 S420010007392806 20230602 2023-06-01 23 owe 9 ewhw 0
14 S420010007392806 20230603 20230603 0 ow 10 cwhw 1
16 S420010007392808 20230604 2023-06-04 3 e 10 owhw 1
16 S420010007392808 20230605 2023-06-05 0 ow 10 w 0
17 S420010007392806 2023-06-06 2023-06-06 0 ong 10 ow 1
18 S420010007302806 20230607 2023-06-07 0 e 10 cwhw 0
19 S420010007392808 20230608 2023.06-08 4 e 9 ow 0
20 S420010007392806 20230608 2023-06-00 2 ow 9 ow 0
21 $420010007262806 20230610 20230609 22 ow 8 ow 1
22 S420010007392808 2023-06-11 2023-06-11 2 e 9 w 1
23 S420010007392806 2023.06-12 2023-06-12 0 ow 10 w 0
24 S420010007392806 20230613 2023-06-12 22 h 9 ow 0
26 S420010007302808 2023.06-14 2023-06-14 0 ow 9 tw 0
26 S420010007392806 20230615 2023-06-15 1 ow 9 w 0
27 S420010007392806 2023-06-16 2023-06-16 0 ow 9 w 0
28 $420010007392806 2023-06-17 2023-06-17 0 e 10 hw 1
29 S420010007392808 20230620 2023.06-20 2 e 9 ow 0

Step 6. Classifying Weekday/Holiday Sleep-Wake Time
Patterns

Fig. 11 presents the classified sleep and wake-up time
patterns for a representative household (meter ID
S420010007392806), differentiated between weekdays and
holidays. The x-axis denotes the calendar date, explicitly
labeled with "(W)" for weekdays and "(H)" for holidays to
provide immediate visual distinction. By analyzing the
distribution of points, it becomes evident that this household
maintains relatively stable wake-up times across both
weekdays and holidays, predominantly between 8:00 and
10:00. In contrast, sleep times show greater variability,
particularly on holidays, where later sleep time is observed
more frequently.

Sleep and Wake Times for Household 5420010007392806 [Weekday vs Holiday Marked)
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Fig. 11. The classified sleep and wake-up time patterns for a representative
household
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This study presented a non-intrusive method for
estimating household behavioral lifestyle by leveraging multi-
source smart meter data, specifically electricity, hot water, and
cold water usage logs. By designing a structured time-interval
aggregation algorithm consisting of six core steps—including
active hour identification, interval construction, temporal
frequency filtering, cross-source interval merging, sleep—
wake time inference, and weekday/holiday pattern
classification—the proposed framework enables interpretable
and scalable behavioral profiling without requiring any direct
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sensor installation or user intervention. In the future, we will
evaluate the proposed method’s substantiality and reliability
by validating the inferred patterns against ground-truth survey
or sensor-based data to further confirm the reliability and
generalizability of the method.
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