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Abstract—Contrastive learning has become a cornerstone for
self-supervised time-series representation learning, yet its practi-
cal application is often hindered by the quadratic computational
and memory complexity of the standard Information Noise-
Contrastive Estimation (InfoNCE) loss function. This bottleneck
severely limits the use of large batch sizes and complex hierar-
chical models, such as TS2Vec, which are crucial for learning
high-quality representations. To address this fundamental lim-
itation, we leverage a first-order Taylor expansion to approxi-
mate the InfoNCE loss. This approach circumvents the explicit
computation of the full similarity matrix, effectively reducing
the complexity to a manageable linear scale. We integrated
our Taylor-approximated loss into the TS2Vec framework and
evaluated its performance on the Human Activity Recognition
(HAR) benchmark, from University of California, Irvine (UCI)
Machine Learning Repository. Our experiments demonstrate a
substantial improvement in efficiency—achieving up to a 7.3x
speedup and an 8.5x reduction in peak memory usage—while
maintaining classification accuracy and discriminative power
highly comparable to the original, resource-intensive model.
By mitigating the prohibitive costs of large-batch training, our
work enables the deployment of powerful time-series models in
resource-constrained settings, paving the way for broader appli-
cations in fields like biomedical signal processing and federated
learning.

Index Terms—Time-Series Analysis, Contrastive Learning,
Representation Learning, Loss Function Optimization, Taylor
Expansion, Computational Efficiency

INTRODUCTION

Contrastive learning has emerged as a dominant paradigm
in self-supervised representation learning, fundamentally re-
shaping the acquisition of meaningful data representations
from vast unlabeled datasets [1], [2]. This approach obviates
the need for costly and labor-intensive manual annotation by
training models to distinguish between similar and dissimilar
data points. The core principle involves generating semanti-
cally related “positive pairs” and unrelated “negative pairs”
through data augmentations [3], [4]. In the learned embedding
space, the representations of positive pairs are encouraged
to be proximal, while those of negative pairs are repelled.
Central to this process is a contrastive loss function, with
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Information Noise-Contrastive Estimation (InfoNCE) being
one of the most effective and widely adopted variants [2],
[5]. By maximizing the mutual information between latent
representations of positive pairs, InfoNCE enables the model
to learn a highly structured embedding space that captures
intricate data semantics. The resulting representations have
demonstrated remarkable transferability, achieving state-of-
the-art performance on various downstream tasks, often ri-
valing or surpassing fully supervised methods, particularly in
data-scarce domains [3], [6].

Despite its empirical success, the standard implementa-
tion of InfoNCE-based contrastive learning is hampered by
a significant computational bottleneck, namely its quadratic
computational and memory complexity. To compute the loss
for a mini-batch of size B, it is necessary to construct a B×B
similarity matrix containing scores for all possible pairs, result-
ing in memory and computational costs that scale quadratically
(O(B2)) with the batch size. This quadratic scaling poses a
critical barrier to scalability, as the performance of contrastive
learning often correlates positively with the use of larger batch
sizes, which provide a greater diversity of negative examples
[3], [7]. This challenge is exacerbated in advanced hierarchical
architectures such as TS2Vec, a universal framework for time
series representation learning [8], where applying contrastive
loss across multiple semantic levels compounds the memory
burden.

While distributed training strategies that partition data and
computation across multiple accelerators have been proposed
to mitigate this issue [9], they are not universally applicable.
Such methods are often infeasible in settings where privacy
or hardware constraints mandate on-device computation, a
common requirement in biomedical applications and federated
learning [10], [11].

This motivates the need for a more fundamental solution.
Inspiration can be drawn from recent work in the imag-
ing domain, which has highlighted that contrastive learning
performance is highly dependent on the penalty strength,
or ”hardness,” applied to negative samples [16]. To investi-
gate this relationship, their study utilized a simplified, non-
exponential contrastive loss, enabling a direct comparison of
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performance across different ’hardness’ levels. But we point
out that simplified, non-exponential contrastive loss has further
advantages. By leveraging Taylor expansion to contrastive loss,
computational burden can be addressed.

While previous studies have focused on the theoretical
behavior of the InfoNCE loss, its practical application is
often hindered by significant computational and memory costs.
In this paper, we address this computational challenge by
leveraging a first-order Taylor approximation of the InfoNCE
loss, which effectively linearizes its complexity. We apply this
computationally efficient loss to memory-intensive hierarchical
time series models, such as TS2Vec, and conduct a compar-
ative analysis of its time and space complexity and down-
stream task performance against the standard InfoNCE. Our
experiments demonstrate that this approach yields substantial
improvements in memory efficiency, allowing for training on
a single resource-constrained device, and maintains the high
quality of the learned representations, showing significant
promise for biomedical time series analysis.

I. RELATED WORK

A. Time series contrastive learning

The success of contrastive learning in computer vision has
inspired its application to time-series representation learning.
Various methods have been proposed to adapt this paradigm
to the unique characteristics of temporal data. Early ap-
proaches adapted triplet loss frameworks for time-series data
to learn discriminative representations [12]. More recent works
have developed sophisticated augmentation strategies and con-
trastive objectives. For instance, TS-TCC learns robust repre-
sentations by performing temporal and contextual contrasting
simultaneously [13], while CoST focuses on disentangling sea-
sonal and trend components through a specialized contrastive
objective [14].

Among these, TS2Vec [8] has emerged as a particularly
powerful and universal framework, achieving state-of-the-art
performance across various benchmarks. However, a common
thread among these advanced models, including TS2Vec, is
their reliance on a contrastive loss that requires pairwise
similarity computations. As established in the Introduction,
this shared mechanism leads to the foundational O(B2) com-
plexity bottleneck that limits their scalability. Our work di-
rectly addresses this fundamental issue, proposing an efficient
approximation that can benefit not only TS2Vec but also the
broader landscape of time-series contrastive learning models.

B. TS2Vec

As our work directly optimizes the loss function used in
TS2Vec [8], we use it as the baseline framework to validate
Taylor-approximated method. TS2Vec is designed to learn uni-
versal representations for arbitrary time series from different
domains without requiring domain-specific augmentations or
model modifications.

1) Encoder: TS2Vec first generates two augmented views
by randomly cropping overlapping subseries from an input
time series. These subseries are then fed into a shared encoder
network. The encoder consists of an input projection layer,
a timestamp masking mechanism, and a stack of dilated
convolution blocks to capture temporal dependencies across
various receptive fields.

2) Positive Pairs: Positive pairs are defined based on the
principle of contextual consistency. For two augmented sub-
series, only the representations corresponding to the same
original timestamp are considered a positive pair. All other
pairs, whether they are from different timestamps within the
same subseries or from different timestamps between the two
subseries, are treated as negative pairs.

3) Hierarchical Contrastive Loss: A key feature of TS2Vec
is its hierarchical contrasting mechanism. The contrastive loss
is computed not only at the final output of the encoder but also
at intermediate layers. This forces the model to learn multi-
scale contextual information, capturing both fine-grained and
coarse-grained patterns within the time series. However, this
hierarchical approach exacerbates the memory burden, as it
requires computing multiple large similarity matrices.

II. METHOD

A. InfoNCE loss

Let r, z ∈ RB×C be two matrices of embeddings, where B
is the batch size, C is the embedding dimension and R is a set
of real number. The i-th embedding vector from each matrix
is denoted by ri, zi ∈ RC .

LInfoNCE = − 1

B

B∑
i

log
exp(sim(ri, zi))∑B
j exp(sim(ri, zj))

(1)

Typically, the similarity function sim(x, y) is the dot product
x · y, assuming the vectors are L2-normalized. Thus, the
conventional InfoNCE loss is expressed as:

LInfoNCE = − 1

B

B∑
i

log
exp(ri · zi)∑B
j exp(ri · zj)

(2)

B. Loss Function Optimization by Taylor Expansion

However, a direct computation of the InfoNCE loss requires
constructing a similarity matrix. Storing this matrix requires
O(B2) space, which introduces a significant computational
and memory bottleneck, especially for large batch sizes. To
overcome this limitation, we leveraged a Taylor expansion
of the InfoNCE loss to circumvent the need for an explicit
similarity matrix.

The computational challenge arises from the denominator
term in Eq. (2). The loss can be decomposed as:

LInfoNCE = − 1

B

B∑
i

(ri · zi) +
1

B

B∑
i

log{
B∑
j

exp(ri · zj)}

(3)

We approximate the log-sum-exp term in Eq. (3) using a first-
order Taylor expansion.
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1) First-Order Taylor Expansion: We define a function f(t)
as:

f(t) = log

B�
j

exp(st), where s, t ∈ R (4)

The first derivative of f(t) with respect to t is:

df(t)

dt
=

�B
j s exp(st)

�B
j exp(st)

(5)

The first-order Taylor expansion of f(t) around the center
point t = 0 is approximated as f(t) ≃ f(0) + f ′(0)t. This
gives us:

f(t) ≃ log(B) +

��B
j s

B

�
t (6)

By setting t = 1 and substituting s with the dot product
similarity ri · zj , we obtain the approximation for the log-
sum-exp term. Substituting this back into Eq. (3), the final
approximated InfoNCE loss can be written as:

Lap = − 1

B

B�
i

(ri · zi) +
1

B

B�
i

�
log(B) +

��B
j ri · zj
B

��

(7)

= − 1

B

B�
i

(ri · zi) +
1

B

B�
i

log(B) +
1

B2

B�
i

B�
j

(ri · zj)

(8)

= − 1

B

B�
i

(ri · zi) + log(B) +

�
1

B

B�
i

ri

�
·


 1

B

B�
j

zj




(9)

This final expression allows for the calculation of the ap-
proximate loss without explicitly constructing and storing the
similarity matrix.

III. RESULT

A. Temporal/Spatial Efficiency

To rigorously evaluate the computational efficacy of Taylor-
approximated Hierarchical Contrastive Loss, we conducted a
series of benchmarks against the original formulation. Our
primary experiment was designed to simulate common use
cases by systematically varying the batch size (B) from 8 to
1024, while the sequence length (T) and feature dimension
(C) were held constant at 256. Performance was assessed
using two main metrics: execution time and maximum memory
usage. The results of this benchmark are presented in Fig. 1.

The empirical results of the comprehensive benchmark, as
illustrated in Fig. 1A and 1B, reveal a significant performance
disparity between the two methods. The original loss formula-
tion exhibits a super-linear growth trend in both execution time
and memory consumption as the batch size increases. This
trend becomes particularly acute beyond the X-Large (B=128)
configuration, underscoring a critical scalability bottleneck.
In contrast, our Taylor-approximated method demonstrates a
substantially more favorable performance profile, maintaining

significantly lower execution times and memory footprints
across all tested configurations. The slight deviation from
perfect linearity in the Taylor method’s execution time (Fig.
1A) is attributed to the measurement encompassing the entire
input-to-output process, whereas the core loss computation
itself scales linearly. The near-linear growth in resource con-
sumption for our method highlights its superior scalability and
efficiency.

To quantify the relative advantages of our approach, we
analyzed the speedup factor and memory reduction factor,
presented in Fig. 1C and Fig. 1D, respectively. The speedup
conferred by our method is directly correlated with the batch
size. While the gains are modest for smaller configurations
(ranging from 1.1x to 1.2x), they become increasingly pro-
nounced at larger scales, culminating in a 7.3x speedup for
the XXX-Large+ (B=1024) configuration (Fig. 1C). This non-
linear improvement demonstrates the profound algorithmic
advantage of our method in computationally intensive settings.
The benefits are even more significant with respect to memory
efficiency (Fig. 1D). Taylor approximated method achieves a
minimum 2.0x memory reduction even at the smallest Tiny
(B=8) configuration. This efficiency gain steadily amplifies
with the batch size, reaching an 8.5x reduction at the largest
scale.

These experimental findings empirically validate that our
Taylor-approximated loss effectively mitigates the critical
computational complexity and memory bottlenecks inherent
to the standard contrastive loss formulation. Crucially, the
amplification of these efficiency gains with increasing batch
size confirms that our method enables the practical and fea-
sible training of large-scale models, even within resource-
constrained environments such as a single GPU.

B. Accuracy

This section aims to verify that the computational efficiency
gains of Taylor-expanded methodology do not compromise
classification performance. To this end, we conduct an eval-
uation on the UCI HAR dataset, a standard benchmark in
time series classification [15]. This dataset comprises time-
series data from smartphone accelerometers and gyroscopes,
collected from 30 subjects performing six distinct activities:
Walking, Upstairs, Downstairs, Sitting, Standing, and Laying.

Table I summarizes the quantitative benchmark results on
the UCI HAR dataset. This significant gain in efficiency is
achieved at the cost of a marginal decrease in classification
performance. Key metrics such as Accuracy and AUPRC show
a slight reduction of approximately 1-2%. However, we argue
that this minor trade-off is practically acceptable, especially
considering the substantial benefits in computational efficiency
that enable the deployment of large-scale models in resource-
constrained environments.

To further assess discrimination performance of the model,
we analyzed the Receiver Operating Characteristic (ROC)
curves and the Area Under the Curve (AUC) scores, shown in
Fig. 2C and Fig. 2D. The ROC curve illustrates a model’s abil-
ity to distinguish between classes, with performance improving
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Fig. 1. Comparison of execution time and memory consumption across different batch sizes. (A) Execution time comparison, (B) Peak memory usage
comparison, (C) Speedup factor, and (D) Memory reduction factor.

TABLE I
QUANTITATIVE BENCHMARK RESULTS ON THE UCI HAR DATASET

Classification Performance Computational Efficiency

Method Accuracy AUPRC Time (s) GPU Peak (MB) Throughput (items/sec)

Original 0.9213 0.9485 60.1 20576.0 122.4
Taylor 0.9087 0.9291 31.9 8214.0 230.6

as the curve approaches the top-left corner. For both models,
the ROC curves for all six classes are tightly clustered in the
top-left corner, with corresponding AUC scores approaching
1.0. This signifies excellent class separability. Critically, there
are no discernible differences between the curves of the origi-
nal model (Fig. 2C) and our Taylor-approximated model (Fig.
2D). This provides compelling evidence that the discriminative
power of the learned representations is fully maintained.

The evaluation on the UCI HAR dataset demonstrates that
Taylor-approximated method achieves substantial computa-
tional efficiency while maintaining classification accuracy and
discriminative power that are highly comparable to the original
model. This validates our approach as a practical and effective
alternative, capable of delivering performance comparable to
that of more resource-intensive models.

IV. CONCLUSION

In this paper, we address a critical computational bottleneck
in contrastive learning for time-series analysis: the quadratic

(O(B2)) complexity inherent in the standard InfoNCE loss
function. To overcome this limitation, we leverage a first-order
Taylor approximation to estimate the loss, thereby circumvent-
ing the explicit computation and storage of the full similarity
matrix. This approach successfully reduces computational and
memory complexity to a manageable linear (O(B)) scale with
respect to the batch size.

Our empirical evaluations demonstrate the efficacy and effi-
ciency of Taylor-approximated contrastive loss which achieved
a substantial speedup of up to 7.3x and a memory reduction
of up to 8.5x compared to the original hierarchical con-
trastive loss in TS2Vec, confirming its superior scalability.
Critically, this significant gain in computational efficiency
was realized with only a marginal trade-off in performance.
On the UCI HAR classification benchmark, it maintained
discriminative power and accuracy highly comparable to the
original, resource-intensive formulation.

By mitigating the prohibitive costs associated with large-
batch training, our work shows the effective application of
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Fig. 2. Classification performance on the UCI HAR dataset. (A) Confusion matrix for the original model. (B) Confusion matrix for the Taylor-approximated
model. (C) ROC curves for the original model. (D) ROC curves for the Taylor-approximated model.

powerful contrastive learning models in resource-constrained
environments, such as on a single GPU. This advancement
holds considerable promise for democratizing access to state-
of-the-art time-series representation learning and broadens
its applicability in domains where on-device processing is
crucial for data privacy and real-time responsiveness, including
biomedical and wearable sensor data analysis.
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