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Abstract—By selecting the best M’ out of M antennas, antenna
selection significantly lowers the hardware complexity of MIMO
system with large antenna elements at both link ends. The
computational complexity of the widely used antenna selection
method is NP-hard. We lower the complexity by formulating the
selection problem as a convex optimization problem. We apply this
technique to the polarization reconfigurable MIMO (PR-MIMO)
system to additionally gain the benefit of polarization diversity
to the system. Qur simulation result validates that by employing
antenna selection to PR-MIMO, we can achieve full conventional
uni-polarized MIMO capacity with just a subset of antennas.
Further, using convex optimization for antenna selection gives a
close agreement to that obtained by brute-force numerical search,
while yielding lower computational complexity.

Index Terms—Antenna Selection, Polarization, Convex Opti-
mization

I. INTRODUCTION

Multiple input multiple output (MIMO) communication sys-
tem has been the furnace of wireless communication system for
the past recent years. Naturally, much effort has been invested
by the leading scholars to enhance the MIMO system. One
particular area for enhancement has been to address the high
hardware complexity of MIMO which require N x M number
of RF chains for a system with N number transmitters (Tx) and
M number of receivers (Rx). The two main methods for ex-
ploiting MIMO systems are spatial multiplexing, and diversity.
In the former case, independent data streams are transmitted
and received through spatial parallelized MIMO channels. The
parallelization is created via precoding and postcoding based
on singular value decomposition (SVD) of the channel matrix.
Another way to exploit MIMO system is to utilize Tx and
Rx diversity purely for link-quality improvement. Tx antennas
employ maximal-ratio transmission (MRT) to simultaneously
transmit weighted replica of the single bit stream. The ideal
weights are obtained by SVD of the channel impulse matrix.
In the similar manner, Nr Rx antennas utilize maximal-ratio
combining (MRC), where the weighted received signals are
linearly combined to increase the effective SNR. Overall, a
diversity degree of Nt - Nr can be obtained.

The structure of MIMO system is inherently prone to hard-
ware complexity because it requires M x N number of RF

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2024-RS-2024-00436887) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation); and
also by IITP grant funded by MSIT (RS-2024-00439803, SW Star Lab).
(Corresponding author: Joongheon Kim)

979-8-3315-5678-5/25/$31.00 ©2025 IEEE

140

chains for a system with N number of transmitters (Tx) and M
number of receivers (RX). MIMO is exposed to hardware com-
plexity when number of antenna elements becomes large, be-
cause hardware complexity increases proportionally to number
antenna elements. The state-of-the-art wireless communication
system is trending towards increasing the antenna elements as
explained in [1]. For example, fifth generation (5G) new radio
(NR) base stations, Node B (gNB), has deployed antenna panels
that contain at least 64 elements in a single panel as described
in. Therefore, the need for a system with lower hardware
complexity is desired. In this context, antenna selection is a
promising choice that can significantly mitigate this problem
because it chooses a subset of antenna elements which captures
a large portion of the full MIMO system capacity. By selecting
M’ out of M Rx antennas, antenna selection reduces the
hardware complexity by lowering the number of RF chains of
Rx from M to M’.

Another way to enhance MIMO system is to incorporate
polarization diversity. Polarization diversity has demonstrated
a promising potential to improve MIMO system in terms of
symbol error rate (SER) and channel capacity. In particular, [2]
describes a polarized-MIMO system that significantly increases
the channel capacity from that of the conventional MIMO
system. To further enhance the MIMO system, this paper serves
to combine polarization diversity and antenna selection by
capturing the benefit they both provide.

The advantage of antenna selection is demonstrated in [3],
[4]. However, polarization diversity is not taken into account
in the majority of previous research works. Although there
are previous reports that consider polarization diversity with
antenna selection, they consider fixed antenna polarization, [5],
[6]. In contrast, we exploit antenna selection with polarization-
agile antenna elements which significantly outperforms the con-
ventional scheme of the conventional MIMO system. Further,
most of the antenna selection algorithm has high computational
complexity, as the antennas are selected with brute-force search.
However, this paper formulates and solves the antenna selection
problem as a convex optimization problem which yields lower
computational complexity.

II. SYSTEM MODEL

Polarization reconfigurable MIMO (PR-MIMO) system with
antenna selection is illustrated by Fig. 1, where antenna ele-
ments change the antenna polarization angles to any continuous
degrees. Our objective is to select M’ out of M such antenna

ICTC 2025



elements at Rx. The effective channel matrix of PR-MIMO
system is described as

T - T N
PRy, 1H11PTx,1 Prx1 H1NDTX, N

Heﬂ' _ (1)

)

T = T =
PR v HM1DTx1 Prxm HMNDTX, N

where the operation (-)7 is the transpose of a given vector
or matrix. Further, H;; is called “polarization-basis matrix”,
which is expressed as

Hij = |: :| 3

where h;7 with x € {v,h}; y € {v,h} is the XY-channel
impulse response from the Y-polarization Tx antenna to the
X-polarization Rx antenna. Each entry of (2) is modeled as
independent identically distributed (i.i.d.) zero-mean, circularly
symmetric complex Gaussian (ZMCSCG) random variables
with unit variance. Lastly, prx ; and prx; are, respectively,
the Tx-polarization vector at the jth Tx antenna and the Rx-
polarization vector at the ith Rx antenna, and they are expressed

vV vh
hy by
phy - phh

i i

2)

as
L |Prxj| _ |cosb;
Prx,5 = |:p}’ijj| - |:Sln9J ) (3)
L p}’ix’i _ |cos¥b;
PRx,i = |:p}131{x,i:| - |:Sin 91:| . (4)

Here, we call the angles 6; and 6; Tx- and Rx-polarization
angles, respectively. It is worth mentioning that Tx- and Rx-
polarization vectors are unit vectors so that the overall signal
power is preserved. Optimal polarization vectors that maximize
the sum of squared singular value of (1) is described in detail
in [2].

We consider a system where Tx does not know about the
channel while Rx does. Then the capacity of PR-MIMO system
is described by

C(HT) = log,det(Iy +YRes(HT)THT),  (5)

where vy is the signal to noise ratio (SNR), Iy is the N x N
identity matrix and Rgg is the covariance matrix of Tx signals.
Since Tx does not know about the channel, Rgg is chosen as
In/N and optimal polarization is found only at the Rx while
the Tx has its antenna polarization at random angles.

III. ANTENNA SELECTION AS CONVEX OPTIMIZATION
PROBLEM

Antenna selection chooses M’ out of M receivers. We
express (5) with M’ selected receivers as

Cp (HET) = logydet(Iy + YR (HEHTH) - (6)

where the dimension of Hﬁff is M’ x N. Further, we define (5)
as a function of selected antennas by defining A; as

A= {L

if i*" receive antenna selected e

0, if otherwise.
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Using (7), capacity described by (6) becomes a function of A
as

C(A) = logydet(Ips +yAHT (HT) ) (8)

where A is a diagonal matrix consists of A;’s. This is derived
rigorously in [7].
Hence, we formulate the antenna selection problem as

max log,det(I;; +yAHT (HT)H)
subject to  A; = {0,1},
M )
trace(A) = Z A, =M.
i=1

The objective is to find A;’s which maximize (6). We observe
that this problem is NP hard because it is solved with brute-
force search with ( J]\\f,) cardinality as described in [8]. We
seek to formulate the problem into a simpler problem by
applying relaxation on the A;’s by allowing A; € [0, 1]. This
problem then becomes a convex optimization problem with
lower complexity. The reformulated problem is described as
follow

max  log,det(Iy; +yAHT (HT)H)
subjectto 0<A; <1, i=1,..,. M,
(10)

M
trace(A) = Z Ay =M.
i=1

We apply a rounding scheme after the solution is found, where
we round the highest M’ A;’s to 1 and the rest to 0; which
indicates the selected antenna. This is solved efficiently using
the CVX solver [9]. We compare the capacity of PR-MIMO
to conventional MIMO. It is worth to note that conventional
MIMO employ M x N channel matrix H whose entries
are (ZMCSCQG); therefore, the capacity of convention MIMO
system can be analyzed by replacing H*® by H in (5) and (10).

IV. EXPERIMENTS

In this section, we present the performance of our system
with experiment results found via Monte-Carlo simulation. We
obtain the average capacity of over 2000 realization of the
channel matrix for SNR regime from 0 to 20 dB. The result is
illustrated in Fig. 2. The simulation parameters are as follows,
N =2, M = 6 and M’ = 2. We computed the capacity
of conventional MIMO system, using H as channel matrix,
for various scenarios: when M antennas are used (blue curve),
2 optimally selected antennas with (10) are used (red curve),
2 selected antennas with brute-force search (green curve) are
used and 2 randomly selected antennas are used (yellow curve).
We compare these result with 2 selected antennas in PR-
MIMO system (black curve) found by (10). Fig. 2 conveys that
optimally selected antennas (red) yield higher capacity than that
of randomly selected antennas (yellow). Moreover, its capacity
has very close agreement to that of the capacity of selected
antennas found with brute-force search (green). This proves
that the convex method performs as well as the brute-force
method. By applying (10) to the PR-MIMO system (black),
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Fig. 1: Antenna selection in PR-MIMO system.
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Fig. 2: Capacity v/s SNR, M =6, N =2, M' =N

the capacity is close to the capacity found with full antennas
of conventional MIMO system (blue); therefore, exhibiting that
PR-MIMO combined with antenna selection further enhanced
antenna selection system from that of conventional MIMO
system.

V. DISCUSSION

The exhaustive-search selector evaluates ( Aj\;‘[,) subsets, and

each capacity evaluation requires a Cholesky factorization of
an M x M matrix, i.e., O(( %)M %) flops overall. In contrast,
the relaxed problem in (10) is convex and we solve it with
CVX (interior-point). Each iteration then costs O(M N?) plus
O(N?). Theoretical iteration complexity is O(v/M log(1/¢))
[10], while in practice 20—40 iterations suffice. Hence the
total work scales as O(vVM (MN? + N?)) in worst case
and roughly O(M N? + N3) empirically, which is polynomial
and dramatically smaller than the combinatorial exhaustive
search. The final rounding step to pick the best M’ antennas is
O(M log M).

VI. CONCLUSION

This paper finds the best subset of polarization-agile antennas
of PR-MIMO system which captures the large portion of the full

system capacity. Antenna selection problem is formulated into a
convex optimization problem which was solved efficiently using
CVX Solver. The result shows that the proposed method yield a
capacity that has a very close agreement with the capacity found
with brute-force search; showing that we have the advantage
over the brute force method because our method has lower
complexity.
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