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Abstract—With the rapid advancement of artificial intelligence
technologies, transformer-based models have garnered significant
attention by achieving outstanding performance across a wide
range of application domains, including natural language pro-
cessing, computer vision, and speech recognition. However, the
increasing scale of these models has led to substantial growth
in computational demands and memory consumption, thereby
raising critical concerns regarding energy efficiency and sustain-
ability. As transformer models continue to evolve and integrate
into diverse real-world applications, the need for efficient and
environmentally conscious design has become increasingly vital.
These issues are particularly pressing in environments with
limited resources, such as edge devices and mobile platforms.
In this paper, we conduct a comprehensive survey of recent
optimization techniques designed to enhance the energy efficiency
of transformer architectures. We focus on analyzing the structural
characteristics, design principles, and real-world application cases
of these methods. Furthermore, we explore the feasibility and
limitations of lightweight transformer models, offering insights
into future directions for developing efficient and scalable Al
systems. Ultimately, this survey aims to provide insights into the
development of sustainable AI technologies by identifying key
strategies for reducing energy consumption without compromising
model performance.

Index Terms—Transformer Optimization, Energy Efficiency

I. INTRODUCTION

In recent years, artificial intelligence has seen rapid progress
across various domains, including reinforcement learning [1].
Among these developments, deep learning has achieved remark-
able breakthroughs, and among its various architectures, the
Transformer model has emerged as a core technology [2]. Due
to its strong performance in capturing long-range dependencies
through self-attention mechanisms, the transformer has rapidly
replaced traditional models such as recurrent neural networks
(RNNSs) and convolutional neural networks (CNNs), especially
in natural language processing [3]. Its applications have since
expanded into computer vision, speech recognition, and multi-
modal learning, further solidifying its role in modern artificial
intelligence (AI) systems [4]. One of the most powerful features
of transformers is their ability to leverage large-scale pretraining
to achieve generalization and transfer learning across diverse
tasks [5].
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However, the impressive performance gains come at the
cost of significant computational overhead and high energy
consumption [6]. These drawbacks present major challenges
for deploying transformer models in real-time systems, edge
devices, and energy-constrained environments. For instance,
large-scale models such as GPT-3 consume significant amounts
of energy for a single inference, posing challenges for deploy-
ment in energy-constrained or real-time environments, such as
mobile and edge devices [7]. As a result, improving the energy
efficiency of transformer models has become a key research
agenda in both academia and industry. Recent studies have
proposed a range of strategies, including model compression,
low-precision quantization, structured pruning, and dynamic
inference, to reduce computational complexity while preserving
model accuracy. These techniques are especially valuable in
mobile and Internet of Things (IoT) environments, where
resources are limited and energy efficiency is crucial. This paper
provides a comprehensive overview of recent transformer opti-
mization techniques aimed at enhancing energy efficiency. We
analyze structural characteristics and representative applications
of various methods and explore their practical implications for
the development of lightweight, scalable Al systems.

This paper is structured as follows. Section II provides an
overview of the transformer architecture. Section III surveys
recent optimization techniques aimed at improving energy
efficiency. Section IV concludes the paper and outlines future
research directions.

II. TRANSFORMER STRUCTURE

The Transformer architecture, illustrated in Fig. 1, is based
entirely on attention mechanisms and eliminates the need for
recurrence or convolution [8]. This design enables highly par-
allel computation and improves training efficiency by removing
sequential dependencies.

The architecture consists of an encoder-decoder structure,
where both components are composed of multiple stacked
layers [9]. In the encoder, each layer includes a multi-head
self-attention mechanism followed by a position-wise feed-
forward neural network. The decoder has a similar structure
but introduces two key additions: the masked self-attention
layer, which prevents information leakage from future positions
during training, and the cross-attention layer, which enables the
decoder to attend to the encoder’s output representations. At
the core of the Transformer is the self-attention mechanism,
which allows each token in a sequence to weigh the relevance
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Fig. 1: Transformer structure.

of other tokens. Given input representations X € R"*? the

attention scores are computed as,

Attention(Q), K, V') = softmax (QKT) Vv (1)

) ) \/@

In this formulation, @), K, and V represent the query, key,
and value matrices, respectively, obtained through learned linear
projections of the input. The term dj, denotes the dimensionality
of the key vectors, which is used to scale the dot product
for numerical stability. To enhance representational capacity,
the Transformer employs multi-head attention, where multiple
attention heads operate in parallel to capture information from
different subspaces of the input. The outputs of these heads are
then concatenated and linearly transformed, as defined by,

MultiHead(Q, K, V) = Concat(head,, . .., head,)W° (2

Here, h is the number of attention heads, each of which per-
forms an independent self-attention operation, and WO is the
output projection matrix that integrates the results into a unified
representation. Each layer in both the encoder and decoder
includes a residual connection that directly adds the input of
a sub-layer to its output, which helps preserve information
and improves gradient flow during training. This is followed
by a normalization layer that stabilizes the learning process.
Additionally, since the attention mechanism does not inherently
encode the order of input tokens, the model incorporates
positional encodings to inject information about the relative or
absolute position of each token in the sequence.

Overall, the Transformer is highly effective at modeling
long-range dependencies and has demonstrated state-of-the-

art performance across a wide range of sequence-based tasks,
particularly in natural language processing and increasingly in
vision and speech domains.

III. ENERGY-EFFICIENT OPTIMIZATION TECHNIQUES FOR
TRANSFORMERS

The high computational cost and memory demands of trans-
former models have posed considerable challenges for deploy-
ment in low-power or real-time environments, such as edge
devices and battery-powered systems. To address these issues,
a wide range of optimization strategies have been proposed
to improve energy efficiency without compromising model
performance.

One research direction focuses on the multi-head attention
mechanism, a core component of the transformer architec-
ture. Studies have shown that not all attention heads are
equally important, and some contribute negligibly to overall
performance [10]. By identifying and pruning less important
heads, it is possible to significantly reduce computation while
maintaining model accuracy. This approach not only improves
efficiency but also enhances the interpretability of the model.

Hardware-aware optimization has also emerged as a promi-
nent area of study. In this context, block-circulant matrix trans-
formations have been applied to re-structure weight matrices for
more efficient computation on hardware platforms such as field-
programmable gate array (FPGA). By exploiting the circulant
property, these transformations have achieved up to a 16X
reduction in parameter count, and experiments have reported
approximately 8x and 27x energy efficiency improvements
over graphics processing units (GPUs) and central processing
units (CPUs), respectively [11].

Several studies have addressed optimization at the inference
stage, particularly for time-series tasks. By combining struc-
tured pruning with quantization, where floating-point operations
are replaced with low-precision integer arithmetic, researchers
have reduced the size of the model and computational load.
Quantization improves speed and reduces power usage, while
pruning removes low-importance connections, simplifying the
network architecture. These techniques have demonstrated up to
60% improvement in inference speed and approximately 30%
reduction in energy consumption [12].

Other approaches focus on redesigning the self-attention
mechanism itself. Spiking neural networks (SNNs), which use
event-driven computation instead of continuous activations,
have been applied to transformer models to drastically lower en-
ergy usage. By replacing multiplication-based operations with
mask-based addition and introducing spike-event flows, some
models have reported up to 87x reductions in computational
energy [13]. Similarly, sparse attention mechanisms reduce the
quadratic complexity of traditional self-attention to linear or
sublinear levels, improving both speed and energy efficiency
for long input sequences [14].

Dynamic inference is another promising strategy. Instead of
computing all layers or blocks uniformly, models can selec-
tively activate parts of the network based on input complex-
ity or importance. This adaptive execution reduces redundant
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Fig. 2: Overview of the AccelTran pipeline for hardware
acceleration of the transformer model.

computation and lowers power consumption without sacrificing
accuracy. One study reports that sparsity-aware accelerators can
be used to maximize data reuse and minimize memory band-
width, further improving energy efficiency in edge computing
environments [15]. Fig. 2 presents the overall workflow of
AccelTran, a sparsity- and dynamic-inference-aware accelerator
for transformer models. The diagram highlights how weight
pruning, memory tiling, and selective execution are integrated
to reduce computational cost and energy usage during inference.

Finally, some studies propose system-level co-optimization
of algorithms and hardware. Techniques such as quantization-
aware training (QAT), dynamic sparsity, and hardware-friendly
pruning are designed with deployment constraints in mind, and
have been integrated into custom application-specific integrated
circuit (ASIC) or FPGA designs. These methods aim to mini-
mize memory access, organize parallel execution, and optimize
scheduling at the chip level [16].

Collectively, these energy-efficient optimization techniques
demonstrate significant potential for enabling high-performance
transformer models in resource-constrained environments such
as mobile platforms, ToT devices, and embedded systems.

IV. CONCLUSION

This paper reviewed recent optimization techniques de-
signed to improve the energy efficiency of transformer models
from architectural, algorithmic, and hardware perspectives. As
transformer-based models continue to grow in complexity and
computational demand, energy-efficient solutions have become
increasingly critical, especially for applications in mobile, edge,
and IoT environments. We examined structural improvements
that reduce the computational complexity of self-attention,
including pruning and quantization techniques that decrease
parameter counts without compromising accuracy. Event-driven
spiking models and sparse attention mechanisms were also
discussed as promising directions to minimize energy usage
while maintaining performance. Furthermore, dynamic infer-
ence techniques allow selective execution paths based on input
complexity, which can significantly lower power consumption.
System-level co-optimization strategies that combine model
design with hardware-aware deployment were also highlighted.
These techniques collectively contribute to enabling practi-
cal, sustainable deployment of transformer models in energy-
constrained scenarios. Moving forward, future research is ex-

pected to explore hybrid approaches that combine multiple
optimization techniques and develop adaptive mechanisms that
adjust computation dynamically according to energy budgets.
Enhancing energy efficiency will remain a central challenge in
the pursuit of scalable, high-performance Al systems.
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