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Abstract—Recent advances in multi-modal large language mod-
els (LLMs) have demonstrated strong reasoning capabilities in
2D vision-language tasks, motivating the extension of these capa-
bilities to 3D domains. Point clouds, as a compact and precise
representation of 3D geometry, have become a key modality for
enabling high-level spatial understanding. However, the irregular
and unordered structure of point clouds introduces challenges for
efficient processing and cross-modal integration. Recent research
addressing these challenges can be categorized into four main
paradigms: (i) direct point cloud encoding, (ii) point cloud-based
multi-modal alignment, (iii) point cloud and semantic informa-
tion fusion for upsampling, and (iv) multi-view image-based 3D
processing. Representative methods within each paradigm employ
distinct architectural choices to balance geometric fidelity, com-
putational efficiency, and multi-modal capability. This taxonomy
provides a structured perspective on the evolving landscape of
point cloud-LLM integration, highlighting design trade-offs and
offering insights into potential future directions in multi-modal
3D scene understanding.

Index Terms—Point Cloud, Large Language Model, Multi-
modal Large Language Model, LLM

I. INTRODUCTION

The ability to understand and reason about 3D environments
is essential for applications such as autonomous driving, robotic
manipulation, and immersive mixed reality. Among various
3D representations, point clouds have become a dominant
choice due to their direct acquisition from sensors like LiDAR
and RGB-D cameras, as well as their precise preservation
of spatial geometry. However, the irregular and unordered
nature of point clouds makes them challenging to process
efficiently, particularly when integrating with large language
models (LLMs) for high-level reasoning. LLMs have recently
achieved remarkable progress in language understanding and
reasoning across diverse domains [1]-[3]. Building on this
progress, multi-modal LLMs in 2D vision-language tasks have
further advanced, sparking growing interest in extending such
capabilities to the 3D domain, as shown in Fig. 1. Unlike
2D images, point clouds lack a regular grid structure. This
absence complicates the direct use of standard convolutional
or transformer architectures. Moreover, 3D understanding often
benefits from multi-modal information, including text, images,
audio, and even video. These complementary modalities help
capture both the geometric and semantic aspects of a scene.
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As a result, recent research has explored diverse strategies to
bridge point cloud representations with LLMs.

Current methods can be broadly grouped into four major
paradigms. Direct point cloud encoding processes raw XYZ
and RGB features with specialized 3D encoders to preserve
geometric fidelity and produce token sequences compatible
with LLMs [4]-[6]. Point cloud-based multi-modal alignment
embeds 3D data into a shared semantic space with other
modalities through contrastive learning, enabling cross-modal
retrieval and reasoning [7]. Point cloud and semantic infor-
mation fusion for upsampling integrates LLM-generated se-
mantic cues with geometric features to enhance sparse point
clouds into high-resolution reconstructions [8]. Multi-view im-
age-based 3D processing bypasses direct point cloud handling
by constructing 3D-aware features from multi-view RGB and
depth images, leveraging pretrained 2D LMM architectures [9].
Each paradigm reflects a different design choice in balancing
geometric accuracy, computational efficiency, and multi-modal
capability. Direct encoding excels at detailed spatial reasoning
but faces scalability challenges in large-scale scenes [4]-[6].
Multi-modal alignment supports flexible cross-domain queries
but may lose fine-grained geometric detail [7]. Semantic-guided
upsampling improves reconstruction quality but depends on
reliable semantic generation [8]. Multi-view image approaches
benefit from existing 2D infrastructure yet require high-quality
multi-view captures [9].

This trend in integrating point clouds with LLMs highlights
the convergence of geometric processing and multi-modal rea-
soning. Understanding these categories and their trade-offs is
crucial for guiding future work in 3D scene understanding that
combines spatial precision with semantic richness.

II. 3D MULTI-MODAL LARGE LANGUAGE MODEL
A. Direct Point Cloud Encoding Approaches

Direct point cloud encoding processes raw 3D data, con-
sisting of XYZ coordinates and RGB color values, directly
with a 3D encoder. This avoids intermediate representations
and preserves both geometric detail and visual cues. The
main challenge in this approach is handling large point sets,
where efficient sampling and token reduction are required for
scalability. LL3DA applies this method to point clouds from
datasets such as ScanNet and ARKitScenes [4]. It uses a
PointNet++ backbone, preceded by preprocessing steps that
normalize coordinates, apply farthest point sampling (FPS) for
uniform coverage, and add sinusoidal positional encoding to
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Fig. 1: 3D MMLLM pipeline: multi-view 3D inputs yield grounded scene captions describing attributes and spatial relations.

preserve spatial structure. The encoder extracts multi-scale local
and global features, which are then transformed into LLM-
compatible tokens. These tokens, paired with textual inputs,
are processed by a multi-modal Transformer for tasks like 3D
visual question answering, object grounding, and scene sum-
marization. 3UR-LLM follows the same paradigm but adopts
a Sparse Convolution architecture for large-scale scenes [5].
The point cloud is voxelized into a sparse grid, with RGB and
XYZ attributes averaged within each voxel. A MinkowskiNet-
based sparse convolutional encoder processes the non-empty
voxels, producing features augmented with positional embed-
dings. Voxel pooling then reduces token counts to fit LLM
context limits, enabling efficient processing of dense, complex
environments. JM3D-LLM also uses a sparse convolutional
backbone for direct XYZ+RGB encoding, but integrates multi-
modal cues after feature extraction [6]. Following voxeliza-
tion and FPS, the 3D features are fused with multi-view
image embeddings from a CLIP-based visual encoder and text
embeddings from an LLM text encoder via cross-attention.
This fusion enriches the geometric representation with visual
texture and semantic information, supporting reasoning that
combines spatial configuration with linguistic context. Overall,
direct encoding approaches share core design elements such
as spatially aware preprocessing, sampling or voxel pooling,
and LLM-compatible token generation. They differ mainly in
the choice of encoder backbone and in whether additional
multi-modal fusion is applied, leading to varying strengths in
scalability, geometric fidelity, and semantic richness.

B. Point Cloud-based multi-modal Alignment Approaches

Point cloud-based multi-modal alignment encodes 3D data
into a shared embedding space with other modalities such as
images, text, audio, and video. The objective is to make embed-
dings of the same object or scene close in latent space through
contrastive learning, while pushing apart those of unrelated
samples. Point-Bind follows this approach using a Point-BERT-
based Transformer encoder to process point clouds [7]. The
model extracts high-level geometric features, projects them into
a fixed-dimensional space, and aligns them with embeddings
from image, text, audio, and video encoders. Training uses
paired multi-modal data with a contrastive loss to enforce cross-
modal consistency. This alignment allows flexible cross-modal
retrieval and reasoning. For example, the model can retrieve a
3D shape from a text prompt or match a 3D object to its audio
description. By grounding 3D geometry in a unified semantic

space, such methods enable richer interaction between 3D data
and diverse media.

C. Point Cloud and Semantic Information Fusion for Upsam-
pling

Upsampling approaches enhance sparse point clouds by com-
bining geometric features with semantic cues from LLMs. This
allows reconstruction of high-resolution geometry with both
structural detail and semantic coherence. PULLM first extracts
multi-scale geometric features using hierarchical grouping and
feature aggregation [8]. A PointLLM module generates a textual
description of the scene, encoded into a semantic embedding.
The geometric and semantic features are merged in the feature-
aware translator (FAT), aligning the modalities in a shared
space. An Adaptive B-spline convolution then refines the fused
features, preserving sharp edges and smooth surfaces during
upsampling. The result is a dense, high-quality point cloud that
reflects precise geometry and meaningful scene semantics.

D. Multi-view Image-based 3D Processing Approaches

Multi-view image-based methods build 3D representations
from RGB images and depth maps taken from multiple view-
points, without directly processing raw point clouds. This
allows the reuse of pretrained 2D Large multi-modal Model
(LMM) architectures while adding spatial context. LLaVA-
3D extracts image patches from multi-view RGB inputs and
assigns each patch a 3D coordinate using camera pose and
depth [9]. These coordinates become 3D positional embeddings
that are combined with visual features to create 3D-aware
tokens. To reduce redundancy, voxelization pooling or FPS is
applied before feeding tokens into a multi-modal Transformer.
A Grounding Decoder then predicts 3D bounding boxes for
object localization and grounding. By embedding spatial co-
ordinates into 2D visual tokens, this approach extends vision-
language models to spatial reasoning tasks such as 3D object
grounding and scene understanding, without requiring direct
point cloud encoding.

III. CONCLUDING REMARKS

The integration of point clouds with LLMs has emerged as
a promising direction for advancing 3D scene understanding.
Existing methods can be classified into four paradigms: di-
rect point cloud encoding, multi-modal alignment, semantic-
guided upsampling, and multi-view image—based processing.
Each paradigm adopts a different strategy to balance geometric
detail, scalability, and multi-modal reasoning. Direct encoding
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methods maintain high geometric fidelity but face limitations in
processing large-scale scenes. Multi-modal alignment enables
flexible cross-domain retrieval while potentially sacrificing fine-
grained spatial accuracy. Semantic-guided upsampling improves
reconstruction quality by incorporating language-driven cues,
whereas multi-view image approaches leverage pretrained 2D
architectures but depend on high-quality multi-view input.
No single paradigm fully resolves all challenges in 3D-LLM
integration. Future advancements are likely to benefit from
hybrid designs that combine geometric precision, semantic rich-
ness, and computational efficiency. The development of unified
benchmarks and large-scale multi-modal 3D datasets will be
essential for fair evaluation and progress. A clear understanding
of the strengths and limitations of current approaches can
inform the design of next-generation frameworks capable of
precise, semantically rich, and efficient 3D reasoning.
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