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Abstract—End-to-end autonomous driving requires robust map-
ping from sequential visual inputs to control actions. While
convolutional neural network (CNN)-based encoders combined
with temporal models such as LSTMs have been widely adopted,
they are limited in capturing long-range spatial dependencies and
global context within visual sequences. This paper introduces
a lightweight vision transformer-based sequence-to-action (ViT-
S2A) network that integrates a compact ViT encoder with an
long short-term memory (LSTM)-based temporal aggregation
module to directly predict discrete driving actions. To validate
the feasibility of the proposed framework, we construct a syn-
thetic sequence-to-action benchmark, where object trajectories
correspond to left, straight, or right movements. Comparative
experiments demonstrate that ViT-S2A consistently outperforms
a CNN-LSTM baseline in both convergence speed and prediction
accuracy, that highlights the effectiveness of global attention in
modeling spatiotemporal dependencies. These results indicate that
transformer-based architectures offer a promising direction for
scalable, data-efficient autonomous driving control models.

Index Terms—Vision Transformer, Sequence-to-Action, Au-
tonomous Driving

I. INTRODUCTION

Autonomous driving has emerged as a central research
problem in artificial intelligence, requiring robust integration
of perception, temporal reasoning, and control [1]. A critical
challenge in this domain is the sequence-to-action learning
problem, namely, mapping consecutive visual observations into
driving actions such as steering, throttle, and braking [2].
Traditional solutions typically decompose this process into
separate modules for perception, planning, and control, which
often introduce latency and propagate errors across stages [3].
In contrast, end-to-end learning frameworks directly map raw
sensor inputs to control signals, thereby simplifying the pipeline
and potentially improving robustness.

Convolutional neural networks (CNNs) have been widely
adopted as feature extractors in end-to-end driving archi-
tectures. When combined with recurrent networks such as
long short-term memory (LSTM), CNN-based approaches can
capture short-term temporal dependencies across consecutive
frames. However, CNN with LSTM models are inherently
limited in their ability to model long-range dependencies and
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Fig. 1: Overview of the proposed ViT-S2A architecture.

global spatial relationships, both of which are crucial for
understanding dynamic driving environments. Recent advances
in vision transformers (ViTs) demonstrate strong capabilities
in capturing global context through self-attention mechanisms,
which offers a compelling alternative to convolutional encoders.
Nevertheless, the application of transformer-based architectures
to autonomous driving control remains relatively underex-
plored.

To address this gap, we propose a ViT-based sequence-to-
action (ViT-S2A) network, which combines a compact ViT
encoder with an LSTM-based temporal aggregation module
to directly map visual sequences to discrete driving actions.
An overview of the proposed hierarchical vision encoder,
which integrates local multi-layer perceptron (MLP) blocks
with global token generation for spatiotemporal representation
learning, is illustrated in Fig. 1. To validate the feasibility of
this framework in a realistic autonomous driving scenario, we
conduct experiments on the Stanford Cars dataset, a large-scale
benchmark for fine-grained vehicle classification. Our results
demonstrate that the proposed ViT-S2A model achieves over
90% accuracy, significantly surpassing the CNN (with LSTM)
baseline and highlights the effectiveness of Transformer-based
architectures in autonomous vehicle recognition tasks.

The contributions of this paper are threefold:

e We design a lightweight end-to-end ViT-S2A model that
integrates global visual context modeling with temporal
sequence learning.

o We construct experiments on the Stanford Cars dataset as
a synthetic benchmark for autonomous driving control.

e We empirically demonstrate that ViT-S2A outperforms
a CNN with LSTM baseline in terms of accuracy and
convergence speed, which validates the role of attention
mechanisms in spatiotemporal decision-making.

The remainder of this paper is organized as follows. Section
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II reviews related work on end-to-end driving and transformer-
based vision models. Section III introduces the ViT-S2A archi-
tecture and dataset design. Section IV presents the experimental
results. Finally, Section V concludes the paper toward real-
world deployment.

II. RELATED WORK

Recent studies in autonomous driving have increasingly
emphasized end-to-end learning approaches that directly map
sensory inputs to control signals [4]. Conditional imitation
learning demonstrated that raw visual observations can be
effectively translated into control actions under high-level nav-
igational commands [5]. Building upon this line of research,
subsequent work showed that reinforcement and imitation
learning techniques enable agents to learn to drive in a sin-
gle day, highlighting the potential of sample-efficient end-
to-end methods [6]. Further studies enhanced robustness by
leveraging data-driven simulation to train end-to-end control
policies capable of handling diverse environments [7]. More
recent advancements incorporated safety constraints into end-
to-end frameworks for urban driving, while other research
explored the interpretability of large language models through
the DriveGPT4 framework [8], [9]. Collectively, these studies
demonstrate the growing importance of end-to-end autonomous
driving paradigms. Parallel to these developments, the ma-
chine learning community has made significant progress with
attention-based architectures. The Transformer model, which
utilizes self-attention to capture long-range dependencies, offere
a compelling alternative to recurrent neural networks [10].
Building on this foundation, the Vision Transformer (ViT)
was introduced, that represents images as patch tokens and
applies Transformer encoders to achieve competitive or superior
performance compared to convolutional networks in large-scale
vision tasks [11].

III. VIT-S2A

The ViT-S2A is designed to map sequential visual observa-
tions into discrete control actions. The framework consists of
three stages: spatial encoding via vision transformers, temporal
aggregation via recurrent modeling, and final action prediction
through a classification head.

A. Spatial Encoding with Vision Transformer

Let X = {x1,22,...,27} denote a sequence of T' consec-
utive image frames, where each frame x, € R¥*Wx*C Fig 2
illustrates how global query tokens extend the receptive field
to capture long-range spatial dependencies across the driving
scene [12]. Each frame is first divided into N non-overlapping
patches of size P x P as,

HxW

p2 -
Each patch is flattened into a vector and projected to a d-
dimensional embedding space:

N = 6]

Zf = We-Flatten(xﬁ), 1= 17---7N7 2
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Fig. 2: Illustration of the global attention mechanism applied

to driving scenes.
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Fig. 3: The Transformer architecture consisting of multi-head
self-attention, feed-forward layers, and residual normalization.

where W, € R *C) is a learnable linear projection. A
learnable classification token z{ is prepended to the patch
sequence, and positional encodings E, are added to preserve
spatial order:

- 2]+ Epos- 3)

The sequence is then passed through L layers of transformer
encoders, each consisting of multi-head self-attention (MHSA)
and feed-forward networks (FFN):

Z}, =MHSA(Z}_|)+ Z}_,, 4)

t __ t t t
Zy = [2as 215 72, - -

where the multi-head self-attention (MHSA) module refines
the token representations by aggregating information across all
spatial positions.

ZL=FFN(ZY+ Z!', ¢=1,...,L. (5)

As shown in Fig. 3, the encoder—decoder backbone leverages
MHSA and FFN to extract contextual dependencies across
sequential inputs. The final representation of the [CLS] token,
denoted hy = Z4[0] € RY, serves as the frame-level feature
embedding [13].

B. Temporal Aggregation with LSTM

To capture motion dynamics and temporal continuity, the
sequence of frame embeddings {hi,hs,...,hr} is passed
through a recurrent neural network. In this work, a single-layer
LSTM is employed:

(Ot,Ct, St) = LSTM(hu Ct—1, 5t—1)7 (6)
h* = or, (7)

where o; is the output, c; the cell state, and s; the hidden state
at time ¢. The last output h* encodes the aggregated temporal
information across the entire sequence.



TABLE I: Performance comparison between CNN-LSTM base-
line and ViT-S2A on the Stanford Cars dataset.

Model | Accuracy (%) | Convergence Epoch
CNN-LSTM 85.2 20
ViT-S2A (proposed) 91.7 12

C. Action Prediction

The aggregated feature A* is mapped to the action space A =
{left, straight, right} using a fully connected layer followed by
a softmax classifier:

9 = Softmax(W,h* +b,), ®)

where W, € R4 and b, are learnable parameters. The
model is trained by minimizing the cross-entropy loss:

|Al
L=— Zyk log g,
=1

where y is the one-hot ground truth label.

In summary, the ViT-S2A algorithm integrates global feature
extraction from ViT with temporal modeling via LSTMs, which
provides an effective S2A mapping for autonomous driving
control.

9

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed ViT-S2A frame-
work in a realistic autonomous driving scenario, we conducted
experiments on the Stanford Cars dataset, which provides fine-
grained classification across 196 vehicle categories. This dataset
is highly representative of real-world driving conditions due to
its diversity in vehicle types, poses, and lighting conditions,
thereby offering a challenging benchmark for autonomous
recognition models.

A. Experimental Setup

The dataset is divided into 8,144 training images and 8,041
test images, that follows the official split. All images were
resized to 224 x 224 pixels to match the input resolution of the
Vision Transformer. We employed data augmentation including
random cropping, horizontal flipping, and normalization to
enhance generalization. The ViT-S2A model was initialized
with pretrained weights from DeiT-Small and fine-tuned using
AdamW optimizer with a learning rate of 3 x 10~° and cosine
annealing learning rate scheduling. For comparison, a CNN-
LSTM baseline was trained under the same data pipeline and
optimization settings.

Table I summarizes the performance comparison between the
CNN-LSTM baseline and the proposed ViT-S2A model. The
CNN-LSTM achieved 85.2% top-1 accuracy after 20 training
epochs. In contrast, ViT-S2A significantly outperformed the
baseline by achieving 91.7% accuracy while requiring only 12
epochs for convergence. These results highlight, transformer-
based architectures demonstrate superior representational ca-
pacity in capturing the fine-grained visual features inherent in
real-world autonomous driving tasks. Moreover, ViT-S2A not
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only improves final recognition accuracy but also accelerates
convergence, which indicates improved training efficiency.

V. CONCLUSION

In this work, we presented ViT-S2A. Through comprehen-
sive evaluation on the Stanford Cars dataset, the proposed
approach demonstrated significant improvements over a CNN-
LSTM baseline, achieving 91.7% top-1 accuracy with faster
convergence. These findings validate the strong representa-
tional capability and training efficiency of Transformer-based
architectures in fine-grained vehicle recognition tasks. Looking
forward, we plan to extend this framework to multi-modal
settings that integrate vision with LiDAR and sensor fusion,
as well as real-time sequence-to-control tasks. Such extensions
will further advance the practicality of ViT-S2A for next-
generation intelligent transportation and autonomous driving
applications.
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