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Abstract—End-to-end autonomous driving requires robust tra-
jectory planning to ensure both safety and adaptability under
diverse conditions. Traditional reinforcement learning (RL) and
imitation learning (IL) approaches encounter challenges such as
unstable training, poor generalization, and high sample complex-
ity. For these reasons, flow matching (FM) in generative modeling
is proposed as a promising alternative for action planning. There-
fore, this paper proposes the feasibility of FM-based planning
using a simplified environment as a controlled abstraction of road
networks. The evaluation demonstrates that FM achieves rapid
and stable convergence and generates near-optimal trajectories.
Furthermore, the proposed algorithm produces smoother paths
than the RL method. These results highlight the potential of FM to
ensure both optimality and adaptability in data-driven generative
models. Therefore, this paper establishes FM as a foundation for
advancing end-to-end autonomous driving systems.

Index Terms—Flow Matching (FM), Generative Model, End-to-
End Autonomous Driving

I. INTRODUCTION

End-to-end autonomous driving requires reliable action plan-
ning that generates safe and efficient trajectories. Traditional
reinforcement learning (RL) and imitation learning (IL) often
suffer from instability and limited generalization to unseen
environments [1], [2]. Flow matching (FM), a recent gen-
erative modeling technique, provides a promising alternative
by effectively capturing continuous trajectory distributions and
enabling smooth action generation [3]. Therefore, this paper
presents an initial validation of FM-based action planning using
a simplified environment. The environment is designed as an
abstracted representation of road networks, where an agent must
navigate from a start position to a goal while avoiding obstacles.
This environment offers a controlled testbed for evaluating the
feasibility of FM in action planning before extending it to
full-scale autonomous driving systems. This paper presents an
initial exploration of FM-based action planning for autonomous
driving. The key contributions are summarized as follows:

• Introduce FM as a generative framework for action plan-
ning in autonomous driving.

• Comparative analysis with established planning methods
under controlled experimental conditions.
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Fig. 1: Proposed FM architecture.

• Suggest future direction to enhance end-to-end au-
tonomous driving through improved generalization and
trajectory modeling.

Consequently, this paper establishes FM as not only a theoret-
ical framework but also a practical foundation for advancing
scalable and reliable end-to-end autonomous driving systems.

II. RELATED WORKS

Research on autonomous driving has widely explored
learning-based approaches for end-to-end control. IL algorithms
directly map sensory inputs to driving actions [4]. Although
they provide efficiency in training, they typically fail to handle
distributional shifts and exhibit poor generalization in diverse
or rare driving conditions [5]. RL methods, in contrast, enable
adaptability through trial-and-error interaction with the envi-
ronment [6]. However, their reliance on extensive exploration
results in high sample complexity, and training stability remains
a persistent challenge [7]. These limitations restrict their de-
ployment in real-world safety-critical systems [8].

Generative modeling has recently gained traction as a promis-
ing alternative for sequential decision-making [9]. Diffusion-
based methods demonstrate strong capacity in modeling com-
plex data distributions and have been applied to trajectory
prediction and motion generation tasks [10]. FM, as a specific
class of generative modeling, offers distinct advantages by
learning vector fields that transform noise distributions into
structured trajectories [11], as shown in Fig. 1. This architecture
provides stable training dynamics and efficient trajectory sam-
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pling, reducing computational overhead compared to traditional
diffusion processes [12].

The integration of such generative techniques into planning
enables the generation of smooth, robust, and dynamically
feasible action sequences [13]. This stands in contrast to
deterministic classical methods, which guarantee optimality
under simplified assumptions but lack flexibility in uncertain or
dynamic conditions [14]. FM thus represents a new direction
that unifies the strengths of data-driven learning with principled
generative modeling, establishing a foundation for more reliable
end-to-end autonomous driving [15].

III. ALGORITHM

The proposed algorithm formulates end-to-end autonomous
driving as an action planning problem that can be effectively
addressed through FM. Unlike classical optimization-based
planners that rely on deterministic search, FM provides a gen-
erative framework capable of learning continuous distributions
of feasible trajectories. In this architecture, a velocity field is
learned to progressively transform random noise samples into
structured trajectories. As a result, the algorithm ensures that
the generated paths are smooth and dynamically consistent.
It also remains robust against environmental variations that
typically degrade the performance of conventional methods.
The training process follows the rectified flow formulation.
For each demonstration collected from expert references, a
target trajectory x1 is defined as the ground truth sequence of
waypoints. A Gaussian noise vector x0 ∼ N (0, I) is sampled
to serve as the initialization. These two elements are combined
through linear interpolation to create an intermediate state:

The learning process is based on the flow formulation. For
each reference demonstration, a target trajectory x1 is paired
with a Gaussian initialization x0 ∼ N (0, I). An intermediate
state is then obtained by linear interpolation, defined as

xt = (1− t)x0 + tx1, t ∈ [0, 1]. (1)

The ideal transport velocity guiding this transformation is

ut = x1 − x0. (2)

The model then is trained to predict this vθ(xt, t), minimizing
the mean squared error, shown as

L(θ) = ∥vθ(xt, t)− ut∥2. (3)

Through this process, the model acquires a continuous mapping
from noise to structured trajectories.

In inference time, a trajectory is then generated by sampling
x0 ∼ N (0, I) and repeatedly applying the learned velocity
field. The integration is performed via a discretized update rule,
defined as

xt+∆t = xt + vθ(xt, t)∆t. (4)

This recursive update gradually transports the noisy initializa-
tion toward a valid trajectory. As t approaches 1, the pro-
cess converges to a coherent and dynamically consistent path.
Because each x0 can yield a distinct yet feasible path, this
architecture guarantees not only diversity but also reliability.

Fig. 2: Loss of Proposed FM Algorithm for 1000 Epochs.

Fig. 3: Comparison of the Generated Path.

Furthermore, the refinement process enforces convergence to-
ward dynamically consistent and smooth trajectories. The gen-
erated plans can be directly mapped into driving environments,
forming the basis for safe, adaptable, and scalable end-to-end
autonomous driving.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup

The evaluation is conducted in a two-dimensional grid-
based environment, which provides a simplified abstraction of
navigation scenarios. Each experiment requires an agent to
move from a start point to a designated goal while avoiding
static obstacles. The environment offers a controlled setup
in which trajectories are modeled as discrete spatial steps
and resampled into continuous paths. It enables systematic
assessment of the ability to generate feasible and smooth
plans. This abstraction validates the fundamental capability to
model trajectory distributions without the added complexity of
real driving environments. Furthermore, its simplicity reduces
computational overhead to ensure feasibility and stability. This
is essential for isolating the action planning component and
demonstrating its effectiveness before real-world deployment.
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B. Evaluation Result

Fig. 2 shows the training loss of the proposed FM algorithm.
The loss exhibits a steep decrease at the beginning, which indi-
cates that the model rapidly captures the fundamental structure
of the transport mapping from noise to valid trajectories. The
reduction rate then becomes gradual, and the loss converges
toward a stable value. This convergence pattern confirms the
numerical robustness of the FM framework and its stability over
long iterations. The observed stability implies that the learned
velocity field is well-aligned with the target dynamics, thereby
ensuring reliable generation of trajectories in subsequent infer-
ence stages. Furthermore, Fig. 3 shows a qualitative comparison
of paths generated by different planning approaches. The trajec-
tory produced by FM aligns closely with the reference solution
obtained by the A* algorithm. This proximity demonstrates that
FM can capture near-optimal solutions while simultaneously
producing smoother trajectories. In contrast, the RL method
tends to generate irregular and less reliable paths, which occa-
sionally deviate from the intended direction. Such deviations
demonstrate the limitations of RL in constrained navigation
environments. In summary, the evaluation results demonstrate
that FM-based action planning offers several advantages: (i)
rapid and stable convergence, (ii) reliable trajectory generation
that remains close to optimal references, and (iii) smooth path
structures that outperform benchmarks. Therefore, this paper
demonstrates that FM provides a promising foundation for
end-to-end autonomous driving, as it combines the optimality
of classical planning with the robustness and adaptability of
generative modeling.

V. FUTURE WORKS AND CONCLUSION

The evaluation results demonstrate the effectiveness of FM
in stable, near-optimal, and smooth trajectories. However, it is
necessary to extend the framework to address the complexities
of real-world autonomous driving. Therefore, future research
should focus on validation and extension to a multi-agent sys-
tem. Validation in realistic simulators is crucial for scalability
under continuous states and dynamic agents. Such validation
enables assessment of scalability and robustness under complex
interactions and variable driving scenarios. Beyond single-agent
navigation, the integration of FM into multi-agent contexts
represents a critical next step. Autonomous driving naturally
involves continuous cooperation among vehicles, pedestrians,
and infrastructure systems. Embedding interaction-awareness
into the flow fields will allow cooperative planning, dynamic
adaptation at intersections, and conflict-free decision-making in
densely populated environments. In conclusion, FM represents
a promising foundation for end-to-end autonomous driving.
The demonstrated balance between trajectory feasibility and
smoothness highlights the potential of FM for both controlled
testbeds and practical driving systems.
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