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Abstract—The integration of multimodal data, such as medical
images and structured clinical records, is crucial for enhancing
diagnostic accuracy. However, effectively fusing these hetero-
geneous data types poses significant challenges, primarily the
semantic gap between modalities and the risk of feature degra-
dation in joint training. To address these issues, we propose ME-
DIATOR (Mutual-information Enhanced DIstillation and gAting
for Two-phase Orchestrated Representation), a novel learning
framework that fundamentally decouples the learning process
into two distinct phases: Phase 1 focuses exclusively on learning
a powerful, unified vision representation from heterogeneous
imaging data. It employs a Mutual information Gating and
Distillation (MGD) mechanism to effectively bridge the modality
gap and generate fusion-optimized features. In Phase 2, the
entire vision module remains frozen, and a lightweight classifier
is trained to integrate these high-quality visual features with
auxiliary tabular data. This decoupled strategy boosts diagnostic
performance by augmenting the rich visual representations with
supplementary clinical information from tabular data, providing
a holistic view of the diagnosis while preserving the integrity
of visual features. Our experiments show that this paradigm
significantly enhances diagnostic performance, establishing a
robust and effective approach for multimodal medical diagnosis.

Index Terms—Multimodal Representation Learning, Medical
Diagnosis, Decoupled Learning, Feature Fusion, Knowledge Dis-
tillation, Information Gating

I. INTRODUCTION

Multimodal deep learning, which integrates heterogeneous
sources such as radiological images and structured patient
records, holds immense promise for advancing medical di-
agnosis [1]. By leveraging complementary views, models can
potentially achieve a more holistic understanding, leading to
more accurate and robust clinical predictions. However, the
path to effective fusion is fraught with challenges.

A central obstacle is the modality gap—the large dis-
crepancy in statistical properties and dimensionality between
different data types, which complicates joint representation
learning [2]. A further pitfall of end-to-end fusion is repre-
sentational dilution: when complex imaging data and simpler
tabular data are trained together, the learning process can
be dominated by the modality with stronger or more easily
learnable signals. This not only washes out rich visual pat-
terns but can also lead to spurious correlations, undermining
generalization [3], [4].
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We address these challenges by departing from the conven-
tional end-to-end paradigm. Instead, we propose a decoupled,
two-phase learning framework named MEDIATOR. In
Phase 1, the model is dedicated to building a strong visual
foundation through a Mutual-Information Gated Distillation
(MGD) mechanism that balances contributions across imaging
modalities. In Phase 2, the vision module remains frozen,
and auxiliary tabular data are integrated via a lightweight
classifier, allowing complementary signals to enhance rather
than interfere.

Our contributions are threefold:

o Framework: We introduce MEDIATOR, a decoupled

two-phase paradigm that separates high-capacity visual
representation learning from auxiliary integration.
Mechanism: We design Mutual information Gating and
Distillation (MGD), a gating—distillation strategy that pro-
duces fusion-optimized visual features while mitigating
modality dominance.
Empirical Validation: We demonstrate that our de-
coupled approach with a frozen vision module sig-
nificantly outperforms standard end-to-end fusion tech-
niques, achieving high performance on a challenging
multimodal medical diagnosis task.

II. RELATED WORK
A. Multimodal Learning in Medicine

Clinical practice is inherently multimodal, relying on im-
ages, laboratory tests, and patient records. Yet, most medical
Al systems remain unimodal, leaving multimodal integration
underexplored. Recent studies have shown that combining
imaging with structured clinical data improves diagnosis,
prognosis, and risk stratification [1], [4], [5]. These results
highlight the pressing need for robust fusion frameworks that
can handle heterogeneity and alignment challenges in real-
world clinical data [6].

B. Evolution of Fusion Architectures

Early fusion methods, such as concatenating features or
averaging predictions [7] provided initial benefits but lacked
the capacity to model complex cross-modal interactions. This
motivated intermediate or joint fusion architectures, which
learn shared representation spaces for deeper modality inter-
action [3]. While effective, these designs remain constrained
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Fig. 1. Overview of the proposed two-phase framework, MEDIATOR. Phase 1 (Vision Representation): Two imaging modalities (X-ray, CT) are encoded
by separate backbones and fused via the proposed MGD strategy to obtain a robust shared representation. Phase 2 (Final Classification): The vision module
remains frozen. Features are integrated with auxiliary tabular data processed by a lightweight MLP, followed by a fusion block and classifier to produce the

final diagnosis.

by end-to-end training, where the optimization process can
blur modality-specific information. Our work departs from this
trajectory by introducing a decoupled training protocol that
avoids such representational dilution.

C. Strategies for Bridging the Modality Gap

A central challenge in multimodal learning is the modality
gap—the mismatch between modalities in scale, structure, and
semantics. Several strategies have been explored:

1) Embedding Alignment: Contrastive and distributional
approaches project modalities into a common latent space [8].
Large-scale vision—language models such as CLIP [9], and
their medical adaptations ConVIRT and MedCLIP [10], [11],
demonstrate the power of alignment.

2) Cross-Modal Attention: Transformer-based attention en-
ables modalities to selectively query each other [12], and has
been applied to medical tasks [13]. While flexible, attention
can be computationally heavy and prone to bias toward dom-
inant modalities.

3) Knowledge Distillation: Distillation transfers knowledge
across modalities or from fused “teacher” models to individual
“student” encoders [14], [15], regularizing them to produce
fusion-friendly features.

D. Research Gap and Our Approach

Despite these advances, most approaches are embedded
within a single monolithic end-to-end pipeline, which forces a

trade-off: alignment is improved at the expense of preserving
modality-specific richness. This reveals a fundamental limi-
tation in current multimodal learning—the learning process
itself, not just the fusion architecture, must be reconsidered
[16]. Addressing this gap, we propose a decoupled paradigm
that first builds a robust, fusion-optimized visual representation
through a novel Mutual-Information Gated Distillation (MGD)
strategy. We then freeze this representation before integrating
auxiliary tabular data, ensuring that strong visual features are
preserved and auxiliary information acts as a true complement
rather than interference.

III. METHOD

We propose MEDIATOR, a decoupled learning framework
for multimodal medical diagnosis that explicitly separates
the representation learning of high-dimensional imaging data
from the integration of auxiliary clinical information. The
framework consists of two modules—(1) a Vision Repre-
sentation Module dedicated to extracting fusion-optimized
features from multiple imaging modalities, and (2) a Final
Classification Module that incorporates structured patient
records. Training proceeds in two distinct phases: Phase 1,
where the Vision Representation Module is optimized using
our Mutual-Information Gated Distillation (MGD) strategy,
and Phase 2, where the Final Classification Module is trained
with the vision module frozen.
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A. Overall Architecture

The model architecture (Fig. 1) is designed to process two
primary data streams: high-dimensional medical images (e.g.,
X-ray, CT) and low-dimensional tabular records (e.g., lab
results, demographics).

« Vision Representation Module: Each imaging modal-
ity is encoded by a dedicated backbone network
(e.g., ResNet, ViT), producing modality-specific features.
These features are fused by a Vision Fusion Module,
producing a unified representation. Phase 1 training of
this module is guided by the MGD strategy, which
balances modality contributions and aligns feature spaces.

« Final Classification Module: Structured records are en-
coded by a lightweight tabular MLP. A Final Fusion &
Classifier block integrates the tabular features with visual
features produced in Phase 1. Importantly, the Vision
Representation Module remains frozen during Phase 2,
preserving the visual representation while incorporating
auxiliary information.

This architectural decoupling stabilizes optimization by
isolating the representation learning from the subsequent mul-
timodal integration stage.

B. Phase 1: Vision Representation Learning via MGD

The sole objective of Phase 1 is to learn a pure, high-quality
visual representation optimized for fusion, without any influ-
ence from non-imaging data. To this end, we employ the MGD
(Mutual information Gating and Distillation) methodology.
MGD is fundamentally different from naive approaches that
simply combine losses; it integrates dynamic, cooperative
mechanisms directly into the learning process. This compels
the model to autonomously discover a shared feature space
that is inherently favorable for fusion, thereby addressing the
core challenges of modality gap and representational dilution.

1) Feature Extraction and Fusion: The process begins with
two independent, modality-specific vision backbones (e.g.,
ResNet, Vision Transformer) that encode their respective in-
puts:

F, = Encoder, (Image,,), (D

Fc = Encoderc (Imagec)a (2)

where F,F. € RP are the D-dimensional feature vectors
extracted from the X-ray and CT images. These vectors are
then merged by a Vision Fusion Module.

Ftysea = Fusion(Fy, Fy). 3)

The design of this module is a key experimental point;
potential architectures range from simple concatenation to
more sophisticated mechanisms like cross-attention, which can
model complex inter-dependencies. The output is a fused fea-
ture, Fpy5eq, Which serves as the “teacher” in the subsequent
distillation step.

2) Knowledge Distillation for Modality Gap Reduction:
To reduce the modality gap, we distill the comprehensive
knowledge encapsulated in the "teacher” feature, F'y, 54, back
to the individual “’student” features, I, and F.. This acts
as a powerful regularization, forcing each backbone to align
its feature space not for its own isolated task, but in a
direction that is maximally beneficial for the final fusion. The
distillation loss, Lg;st411, 1s formulated using the Mean Squared
Error (MSE), which penalizes deviations between the student’s
feature and teacher’s fused feature:

Ldistill = MSE(FIa sg(Ffused))+MSE(Fca Sg(Ffused))- (4)

where sg(-) denotes the stop-gradient operation. This operation
is critical as it detaches the teacher from the computational
graph of the students, ensuring that gradients flow only from
the teacher to the students. This enforces a stable, unidi-
rectional transfer of knowledge and prevents the teacher’s
representation from being corrupted by the students’ learning
process.

3) Information Gating and Feature Refinement: While
knowledge distillation encourages learning shared, fusion-
friendly features, the resulting representation (F'fyscq) may be
dominated by the stronger modality, risking the suppression of
unique, clinically vital information from the other. Information
Gating is introduced as a critical mechanism to counteract this
potential dominance and information loss. This mechanism
employs small, learnable neural networks to compute a gate
value for each modality, which dynamically identifies and con-
trols the flow of the most salient original feature information.

Gate, = o(Linear, (F},)), ®)
Gate, = o(Linear.(F.)), (6)

where o(-) is the Sigmoid function, constraining the gate
values to the range [0, 1]. The final, refined feature, F'y;pq1, is
then constructed by augmenting the fused feature with these
gated original features. This additive, skip-connection-like step
is crucial; it re-injects the most critical, modality-specific
patterns that might have been diluted or lost during the initial
fusion process that created F'yscq. This allows the model
to form a comprehensive representation that synergistically
combines a holistic, fused view with crucial, preserved partial
insights from each source.

Ffinal = Ffused + (Gatez © Fz) + (Gatec © FC)7 (7)

where © denotes element-wise multiplication.

4) Loss Function for Phase 1: The total loss for Phase 1,
Ly;sion, 1S @ composite objective function designed to balance
classification performance with feature space alignment:

Lmain = ['CE (ClaSSiﬁer(Ffinal)» y)v (8)

where Lcog is the Cross-Entropy loss and y represents the
ground-truth labels. The final loss function to be optimized is
a weighted sum:

Lvision = Lmain +A- Ldistill~ (9)
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The hyperparameter \ serves as a crucial trade-off coefficient,
balancing the model’s focus between the primary classification
task (Lqin) and the auxiliary regularization task of feature
alignment (Lg;si11)-

C. Phase 2: Final Classifier Training

Following Phase 1, the Vision Representation Module is
frozen to preserve the learned visual embeddings and prevent
catastrophic forgetting. This ensures that the visual representa-
tion, optimized for fusion among different imaging modalities,
remains intact when introducing auxiliary modalities. Phase
2 is therefore restricted to training the final classifier that
integrates structured patient data with the pre-trained visual
features.

A lightweight Tabular MLP encodes the structured records:

F.s, = TabularMLP(CSV data). (10)

where the encoder typically consists of a small stack of linear
layers with ReLU activations and dropout.

The Final Fusion & Classifier block then integrates
the tabular embedding (F.s,) with the visual features
(Fy, Fe, Frysea)- Different fusion strategies can be employed,
ranging from simple concatenation to attention-based mech-
anisms that explicitly weigh the contribution of visual and
tabular evidence. The classifier produces the final diagnostic
prediction, optimized with the standard cross-entropy loss:

Ltina = Lop(FinalClassifier(Fyisuals, Feso),y).  (11)

During this phase, gradients are propagated only through
the Tabular MLP and the Final Fusion & Classifier, leaving
the Vision Representation Module unchanged. This decoupled
training protocol prevents overfitting to the simpler tabular
features and enables a stable, effective integration of hetero-
geneous modalities.

IV. EXPERIMENTS

We conduct a series of experiments to rigorously validate
the proposed framework, MEDIATOR. Our experimental de-
sign follows a progressive structure: (1) identify the optimal
unimodal encoder for each modality; (2) benchmark stan-
dard fusion architectures to establish strong baselines; (3)
demonstrate the effectiveness of MEDIATOR through ablation
studies and final multimodal evaluations.

A. Datasets and Implementation

We evaluate on a curated subset of the Stony Brook Univer-
sity COVID-19 Positive Cases collection [17], in accordance
with the TCIA Data Usage Agreement. The subset comprises
1,500 paired imaging studies and clinical tables from 438
PCR-confirmed patients, each containing:

« X-ray Image: A frontal chest radiograph, predominantly
portable anteroposterior (AP) views, converted from DI-
COM to PNG and resized to 224 x 224 pixels.

o CT Image: A representative axial slice from the tho-
racic section of a chest CT examination (either contrast-
enhanced pulmonary angiography or routine non-contrast
chest CT), also resized to 224 x 224 pixels.

o Tabular Data: 15 structured clinical features, with nu-
merical features standardized and categorical ones one-
hot encoded.

Since individual CT series of all study types for every
patient contained over 50 of slices, dataset augmentation was
performed by stride sampling: for each series we selected
every k-th slice, where kK = [N/50] for N original slices,
producing up to 50 augmented CT slices per patient, each
paired with the X-ray.

The diagnostic task is a 3-class severity diagnosis (mild,
moderate, severe). We implement MEDIATOR in PyTorch
with an NVIDIA A100 GPU, using AdamW (weight decay
le — 4) and cosine annealing scheduler. The MGD hyperpa-
rameter A was set to 0.4 for this experiment.

B. Backbone Selection for Unimodal Encoders

We first identify effective unimodal encoders for X-ray, CT,
and tabular modalities. Table I reports unimodal accuracies.
This selection is crucial, as the quality of the initial features
directly impacts the potential of any subsequent fusion. We
benchmarked several popular architectures for each modality
independently, and the results are summarized in Table L.

TABLE I
PERFORMANCE OF UNIMODAL BACKBONE MODELS.

Modality Backbone Model pretrained Accuracy(%)
X-ray Swin Transformer [18] | SwinCheX [19] 84.67
EfficientNet [21] ImageNet [20] 82.33
ResNet50 [22] ImageNet [20] 81.00
DenseNet121 [23] ImageNet [20] 78.00
DenseNet121 [23] CheXpert [24] 77.00
CcT 3D ResNetl8 [26] - 56.33
3D VIiT [27] - 56.33
3D ResNet50 [22] Med3D [25] 48.33
3D EfficientNet [28] - 33.33
Tabular CatBoost [29] 84.48
RandomForest [30] 84.12
ExtraTrees [31] 83.39
MLP (Scikit-learn) 79.42
Tabular MLP (Ours) 76.53

The unimodal results reveal a significant performance dis-
parity among the modalities. The X-ray model is highly
informative (up to 84.67% accuracy), while the CT (56.33%)
and various tabular models (up to 84.48%) provide varied pre-
dictive signals. The results highlight the asymmetric predictive
signal across modalities—X-ray and tabular features are highly
informative, while CT is weaker. This asymmetry motivates
the need for sophisticated fusion strategies. For subsequent
experiments, we adopt the pretrained Swin Transformer for
X-ray data, ResNetl8 for CT data, and our implemented
Tabular MLP for the structured clinical records.

C. Analysis of Vision-Only Fusion

Having selected the optimal unimodal encoders, we next
compared a range of standard vision-only fusion strategies to
determine an effective integration scheme for X-ray and CT
representations. This step is essential for identifying the most
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suitable mechanism before introducing additional modalities.
As summarized in Table II, several widely used fusion methods
were evaluated, including concatenation, element-wise opera-
tions, and cross-attention variants.

TABLE II
PERFORMANCE OF BASELINE FUSION STRATEGIES

Fusion Strategy [ Accuracy (%)
Unimodal Baselines

X-ray Only (Swin Transformer) 84.67
CT Only (ResNet18) 56.33
Standard Vision-Only Fusion Baselines
Concatenation 87.33
Element-wise Addition 85.67
Element-wise Product 86.33
Symmetry Cross Attention 86.33
Directional Cross Attention 84.00
Self-Attention (on Concat) 85.00

We observe that simple fusion methods provide only
marginal gains over the stronger unimodal encoder (X-ray),
and in some cases even degrade performance. Neverthe-
less, concatenation achieves the most stable improvements
(87.33%) over the unimodal baselines, and thus we adopt this
strategy as the fusion baseline in our subsequent MEDIATOR
framework. This finding underscores the need for a more
principled approach to address the asymmetry in predictive
power between modalities.

D. Ablation Study of MEDIATOR

To validate the effectiveness of our proposed components,
we conducted an ablation study on the MEDIATOR frame-
work. The results, presented in Table III, demonstrate the
contribution of each part of our two-phase strategy.

The initial vision-only MEDIATOR, without the MGD
strategy’s distillation loss (A = 0), already shows competitive
performance (85.33%). However, by enabling the full MGD
strategy, the accuracy remarkably improves from 85.33% to
91.67 %, confirming that our distillation and gating mechanism
is critical for creating a superior, fusion-optimized visual
representation.

Next, we integrated the auxiliary tabular data. Adding
tabular features with naive end-to-end fine-tuning improves to
96.67%. Crucially, freezing the Phase 1 vision module (our
decoupled strategy) yields 98.33%, validating our hypothesis
that frozen specialized encoders prevent representational dilu-
tion and enable superior integration.

TABLE III

ABLATION STUDY ON THE COMPONENTS OF MEDIATOR
Phase Model / Configuration Accuracy (%)

PHASE 1 | MGD without distillation (A = 0) 85.33

MGD (A =0.4) 91.67

MGD (A =0.5) 88.33

MGD (A = 0.6) 89.67

PHASE 2 | MEDIATOR (End-to-End, Unfrozen) 96.67

MEDIATOR (Frozen) 98.33

Overall, the ablation study of MEDIATOR confirms that
each component—MGD distillation, structured fusion, and
decoupled training—contributes to MEDIATOR s state-of-the-
art performance.

V. CONCLUSION

We presented MEDIATOR, a novel decoupled two-phase
framework designed to address core challenges in multimodal
medical diagnosis. Our approach mitigates representational
dilution by first constructing a robust, fusion-optimized vi-
sual representation via the proposed MGD strategy, and then
freezing this module before integrating supplementary clinical
data. Extensive experiments and ablation studies demonstrate
that this decoupled paradigm consistently outperforms conven-
tional end-to-end training, validating both the effectiveness of
MGD and the importance of our two-phase design.

A key advantage of MEDIATOR lies in its flexibility and
generality. While our experiments focused on fusing X-ray
and CT images with structured clinical data, the framework
is inherently modality-agnostic. The vision backbone can be
readily extended to other forms of high-dimensional medical
inputs such as MRI, histopathology slides, or non-visual
modalities including genomics and clinical narratives.

Finally, the central principle underpinning our frame-
work—decoupling representation learning from auxiliary
data integration—extends beyond the medical domain. This
paradigm provides a robust strategy for multimodal learning in
settings where heterogeneous data with disparate dimensional-
ities must be fused, opening new avenues for cross-disciplinary
applications of multimodal deep learning.
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