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Abstract—This paper proposes a progressive message 
authentication code (MAC) scheme for securing remote control 
(RC) command data in drone systems. The scheme aims to 
ensure data integrity under unstable wireless conditions while 
reducing communication overhead for short-length messages 
that are frequently transmitted. To improve upon conventional 
MAC aggregation techniques, we introduce a modified 
structure that not only incorporates controlled inter-message 
dependencies but also minimizes inter-bit dependency overlap 
by employing randomized bit selection. This design is intended 
to enhance resilience against message loss while progressively 
strengthening authentication guarantees with ongoing data 
reception.  

Keywords— drone RC security, MAC aggregation, progressive 
MAC  

I. INTRODUCTION 
With the advancement of drone technology, the 

application of unmanned aerial vehicles (UAVs) has rapidly 
expanded across military, industrial, and civilian domains. 
Consequently, ensuring the security of drone systems—
particularly the protection of RC command data—has become 
a critical requirement. RC commands are typically transmitted 
as short, real-time data streams over unstable and interference-
prone wireless channels, necessitating the use of efficient and 
lightweight authentication mechanisms to ensure message 
integrity. 

Authenticated Encryption with Associated Data (AEAD) 
is widely used to provide both confidentiality and integrity, 
and is applicable to constrained environments [1]. However, 
the 128-bit authentication tags it produces are considered 
excessive for short control messages, introducing significant 
communication overhead and latency—both of which are 
unsuitable for time-sensitive drone operations. 

One approach to reducing this overhead involves using 
truncated MACs that produce 32-bit or 16-bit tags. These 
shorter tags provide benefits in reducing bandwidth 
consumption and transmission latency, which are important 
for real-time drone control. However, this efficiency comes at 
the cost of weaker security, significantly lowering brute-force 
resistance and increasing vulnerability to forgery and message 
loss in unreliable wireless environments. 

In this paper, we propose a progressive authentication 
framework that balances efficiency and security for short-
length, streaming control data, such as that used in drone 
systems. Our approach extends existing  -Sidon-set-based 
MAC aggregation techniques as proposed in [2] by 
minimizing inter-bit dependency overlap and introducing a 
tunable parameter   to control message index redundancy 
across dependency sets. This results in a flexible structure that 
limits the impact of message loss on overall tag validity and 
improves resilience under unreliable wireless conditions. 

II. PREVIOUS WORKS 
Various authentication strategies have been developed to 

secure real-time streaming data with minimal overhead. In 
particular, MAC aggregation techniques have been introduced 
to reduce transmission overhead while ensuring data integrity 
and authenticity under constrained conditions. 

One fundamental approach is the compound MAC scheme 
[3], which aggregates multiple messages into a batch and 
generates a single authentication tag for the entire group. 
While this method reduces computational cost and the number 
of transmitted tags, it defers verification until all messages in 
the batch are received. As a result, it is unsuitable for real-time 
applications and is highly vulnerable to message loss. 

To overcome these limitations, Progressive Message 
Authentication Codes (ProMACs) [4] were proposed. 
ProMACs adopt a progressive authentication strategy, 
beginning with minimal assurance and strengthening it as 
more messages are received. This method enables real-time 
verification and provides partial assurance of integrity even 
under moderate message loss. However, ProMACs are 
vulnerable to structural attacks, such as sandwich attacks, and 
their sliding-window-based dependency model requires 
continuous message reception to maintain full security. 

In response to these structural weaknesses, the 
Randomized and Resilient Dependency Distributions (R2-D2) 
scheme [2] was introduced. R2-D2 utilizes randomized 
dependency mapping based on mathematical structures such 
as Golomb rulers or  -Sidon sets to evenly distribute 
dependency relationships, thereby reducing the likelihood of 
multiple authentication bits depending on the same message. 
Immediate protection bits—tag components relying solely on 
the current message—are introduced to preserve minimum 
security even during message loss or interference. 

III. PROPOSED SCHEME 
The R2-D2 scheme improved ProMACs by introducing 

randomized, distributed dependencies to mitigate 
vulnerability from concentrated dependency. By using  -
Sidon sets, it limited repeated differences within dependency 
sets, thereby reducing excessive reliance on any single 
message. However,  -Sidon sets alone cannot completely 
prevent overlapping dependencies, which may result in 
multiple tag bits depending on the same message and thus 
increase the impact of message loss. 

To address this issue, we propose an enhanced dependency 
structure called the ( ,  )-Sidon set, which introduces an 
additional parameter  to limit the overlap of elements across 
dependency sets. This enhancement is designed to improve 
the robustness of the authentication mechanism by reducing 
dependency overload and increasing tolerance to message loss. 

In practice, the (,)-Sidon set is constructed through a 
parameter-guided search process defined by four parameters: 
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, , , and . These parameters enable flexible trade-offs 
among security strength, latency, and resilience. Their roles 
are as follows: 

  specifies the maximum number of times a particular 
difference between elements is permitted within a 
single dependency set. For example, when  is set to 
1, no identical differences are allowed, ensuring that 
dependency distances are evenly distributed, which 
matches the original purpose of  in -Sidon set. 

   defines the maximum number of times a specific 
message index may appear across all dependency sets. 
For example, if  is set to 2, each message index may 
participate in at most two different sets. This limits the 
influence of any single message on the overall 
authentication structure and localizes the security 
impact of message loss, thereby enhancing resilience. 

   determines the number of messages involved in 
computing each authentication bit, i.e., the size of each 
dependency set. A larger   improves security by 
increasing structural complexity but also increases 
computational and memory overhead. 

  is associated with the maximum range of message 
indices considered when generating the (,)-Sidon 
set used to construct candidate dependency sets. A 
larger N enables more diverse combinations and 
increases the likelihood of satisfying the given , , 
and . As the (,)-Sidon set can be precomputed and 
shared in advance between the sender and receiver,  
does not impact runtime computation. 

Fig. 1 illustrates the overall process of the proposed 
progressive message authentication framework based on the 
(,)-Sidon set. When AEAD encryption is applied to the 
current plaintext message  , it yields a ciphertext  and an 
authentication tag   of length  bits (typically =128). This 
tag is then condensed through a MAC aggregation process 
into a shorter tag .  

In the proposed scheme, the aggregated tag  consists 
of two components: immediate protection bits derived directly 
from the current tag , and progressive authentication bits 
computed using previously stored progressive tags  from 
the state . This structure supports partial verification even 
in the presence of message loss and progressively strengthens 
authentication as more messages are received. 

Let the length of  be , and the portion dedicated to 
progressive authentication be (< ) . Two types of 
condensed tags are computed as follows: 

 =⊕=⊕⌊/⌋ []∙:()∙                     (1) 

 =⊕=⊕⌊/⌋ []∙:()∙        (2) 

Here, the operator ⊕ denote the bitwise XOR operation 
over the specified bit blocks, and []:  represents the bit 
segment of the  from bit position  to , inclusive.  is the 
bit length of the AEAD tag  , while   and   are the bit 
length of   and  , respectively. The notation ⌊∙⌋ 
indicates the floor function, which returns the greatest integer 
less than or equal to its argument. 

In the Update State stage (see Fig. 1),  is added to the 
state while the oldest entry is discarded, resulting in an 
updated state   . The number of elements retained in   is 
determined by the maximum value among the elements in the 
dependency set  , which will later be selected from the 
precomputed (,)-Sidon set. For example, if the maximum 
index is , the states are updated as follows: 

 = {, ⋯ , }    { , ⋯ , } 

If a message cannot be properly received due to 
interference, adversarial tampering, or other disruptions, a flag 
value (e.g., -1) is stored to mark the entry as invalid. This 
mechanism enables efficient identification of missing 
messages during aggregation and allows unnecessary 
computations to be skipped. 

MAC aggregation is performed by the function (∙) 
shown in Fig. 1. This function takes as input the previously 
accumulated state  and the current tag , and operates 
based on the candidate of dependency pool (,), drawn from 
the precomputed ( , )-Sidon set. And a secret key   and 
message index  , which are securely shared in advance 
between the sender and receiver, are used both to 
deterministically generate the AEAD nonce and to seed the 
pseudorandom selection of dependency subsets. 

The progressive authentication procedure consists of the 
following steps: 

1. Dependency Set Selection: The set of candidate 
dependency subsets, denoted by (,) , is derived 
from the precomputed (,)-Sidon set and used as the 
pool for constructing actual dependency set. To 
ensure sufficient diversity for progressive 
authentication, the total number of available subsets 

Fig. 1. Generation of aggregated authentication tag in the proposed progressive MAC scheme. 
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in ( , )-Sidon set must exceed  . For memory 
efficiency, (,) may be composed of subsets with 
smaller maximum element values. 

2. Randomized Subset Selection: The sender and receiver 
use a shared pseudorandom function seeded by the 
secret key   to randomly select   subsets without 
duplication. These selected subsets form the 
dependency set  = {, … ,  } , which remains 
fixed as long as  is unchanged. 

3. Per-Message Randomization: As required for AEAD 
encryption and decryption synchronization, a per-
message nonce shared between the sender and receiver 
is used as the seed for a pseudorandom permutation. 
The permutation reorders the bits of   to produce . 

4. Final Tag Aggregation: Using the permuted tag and the previously accumulated progressive tags 
in , the final aggregated tag  is computed as 
follows: 

 =  ⊕∈ (, )  for 1 ≤  ≤ 
 []                otherwise               

(3) 
where (, ) =  []  if  = 0       otherwise                 

Here, [] denotes the single bit at position . In , 
the first   bits correspond to progressive 
authentication, while the remaining bits provide 
immediate protection. 

5. Verification under Partial Authentication: Before 
evaluating Eq. (3), any dependency on invalid entries 
flagged in   is excluded from computation. The 
corresponding bit positions in   are treated as 
'don’t care' and excluded from tag verification. The 
security threshold is then adjusted to reflect the 
reduced number of contributing authentication bits. 

Fig. 2 illustrates the tag aggregation process of out 
proposed Progressive MAC scheme. It depicts the overall 
procedure of generating an aggregated tag, including the 
construction of the (,)-Sidon-set-based on parameter setting, 
the selection of the dependency set, and the determination of 
the accumulated state length. It also shows how the permuted 
current tag and progressive tags from selected prior messages 
are combined to produce the final aggregated tag. 

IV. CONCLUSIONS 
This paper presented a progressive message authentication 

scheme tailored for real-time, short-length control data in 
constrained wireless environments such as drone RC systems. 
The proposed method extends existing MAC aggregation 
approaches by employing a (,)-Sidon-based dependency 
structure that enables control over both inter-bit redundancy 
and message index overlap. The scheme separates 
authentication bits into immediate and progressive 
components, enabling authentication to be progressively 
reinforced over time while preserving minimal verification 
capability even under message loss. 

Future work will involve implementing the proposed 
scheme in practical communication environments and 
evaluating its performance under realistic wireless conditions. 
Particular attention will be given to evaluating the trade-offs 
among security, latency, and resource efficiency in the context 
of drone control systems. 
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Fig. 2. Example of Progressive MAC construction using (,)-Sidon-based 
dependencies and accumulated authentication states. 
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