
Design of a Progressive MAC for
Drone RC Data Protection

Joungil Yun, Seungyong Yoon, Byoungkoo Kim, Daewon Kim, Yousung Kang
Cyber Security Research Division

Electronics and Telecommunications Research Institute (ETRI)
Daejeon, Republic of Korea

{sigipus, syyoon, bkkim05, dwkim77, youskang}@etri.re.kr

Abstract—This paper proposes a progressive message
authentication code (MAC) scheme for securing remote control
(RC) command data in drone systems. The scheme aims to
ensure data integrity under unstable wireless conditions while
reducing communication overhead for short-length messages
that are frequently transmitted. To improve upon conventional
MAC aggregation techniques, we introduce a modified
structure that not only incorporates controlled inter-message
dependencies but also minimizes inter-bit dependency overlap
by employing randomized bit selection. This design is intended
to enhance resilience against message loss while progressively
strengthening authentication guarantees with ongoing data
reception.

Keywords— drone RC security, MAC aggregation, progressive
MAC

I. INTRODUCTION
With the advancement of drone technology, the

application of unmanned aerial vehicles (UAVs) has rapidly
expanded across military, industrial, and civilian domains.
Consequently, ensuring the security of drone systems—
particularly the protection of RC command data—has become
a critical requirement. RC commands are typically transmitted
as short, real-time data streams over unstable and interference-
prone wireless channels, necessitating the use of efficient and
lightweight authentication mechanisms to ensure message
integrity.

Authenticated Encryption with Associated Data (AEAD)
is widely used to provide both confidentiality and integrity,
and is applicable to constrained environments [1]. However,
the 128-bit authentication tags it produces are considered
excessive for short control messages, introducing significant
communication overhead and latency—both of which are
unsuitable for time-sensitive drone operations.

One approach to reducing this overhead involves using
truncated MACs that produce 32-bit or 16-bit tags. These
shorter tags provide benefits in reducing bandwidth
consumption and transmission latency, which are important
for real-time drone control. However, this efficiency comes at
the cost of weaker security, significantly lowering brute-force
resistance and increasing vulnerability to forgery and message
loss in unreliable wireless environments.

In this paper, we propose a progressive authentication
framework that balances efficiency and security for short-
length, streaming control data, such as that used in drone
systems. Our approach extends existing  -Sidon-set-based
MAC aggregation techniques as proposed in [2] by
minimizing inter-bit dependency overlap and introducing a
tunable parameter  to control message index redundancy
across dependency sets. This results in a flexible structure that
limits the impact of message loss on overall tag validity and
improves resilience under unreliable wireless conditions.

II. PREVIOUS WORKS
Various authentication strategies have been developed to

secure real-time streaming data with minimal overhead. In
particular, MAC aggregation techniques have been introduced
to reduce transmission overhead while ensuring data integrity
and authenticity under constrained conditions.

One fundamental approach is the compound MAC scheme
[3], which aggregates multiple messages into a batch and
generates a single authentication tag for the entire group.
While this method reduces computational cost and the number
of transmitted tags, it defers verification until all messages in
the batch are received. As a result, it is unsuitable for real-time
applications and is highly vulnerable to message loss.

To overcome these limitations, Progressive Message
Authentication Codes (ProMACs) [4] were proposed.
ProMACs adopt a progressive authentication strategy,
beginning with minimal assurance and strengthening it as
more messages are received. This method enables real-time
verification and provides partial assurance of integrity even
under moderate message loss. However, ProMACs are
vulnerable to structural attacks, such as sandwich attacks, and
their sliding-window-based dependency model requires
continuous message reception to maintain full security.

In response to these structural weaknesses, the
Randomized and Resilient Dependency Distributions (R2-D2)
scheme [2] was introduced. R2-D2 utilizes randomized
dependency mapping based on mathematical structures such
as Golomb rulers or  -Sidon sets to evenly distribute
dependency relationships, thereby reducing the likelihood of
multiple authentication bits depending on the same message.
Immediate protection bits—tag components relying solely on
the current message—are introduced to preserve minimum
security even during message loss or interference.

III. PROPOSED SCHEME
The R2-D2 scheme improved ProMACs by introducing

randomized, distributed dependencies to mitigate
vulnerability from concentrated dependency. By using  -
Sidon sets, it limited repeated differences within dependency
sets, thereby reducing excessive reliance on any single
message. However,  -Sidon sets alone cannot completely
prevent overlapping dependencies, which may result in
multiple tag bits depending on the same message and thus
increase the impact of message loss.

To address this issue, we propose an enhanced dependency
structure called the ( , )-Sidon set, which introduces an
additional parameter  to limit the overlap of elements across
dependency sets. This enhancement is designed to improve
the robustness of the authentication mechanism by reducing
dependency overload and increasing tolerance to message loss.

In practice, the (,)-Sidon set is constructed through a
parameter-guided search process defined by four parameters:

100979-8-3315-5678-5/25/$31.00 ©2025 IEEE ICTC 2025

, , , and . These parameters enable flexible trade-offs
among security strength, latency, and resilience. Their roles
are as follows:

  specifies the maximum number of times a particular
difference between elements is permitted within a
single dependency set. For example, when  is set to
1, no identical differences are allowed, ensuring that
dependency distances are evenly distributed, which
matches the original purpose of  in -Sidon set.

  defines the maximum number of times a specific
message index may appear across all dependency sets.
For example, if  is set to 2, each message index may
participate in at most two different sets. This limits the
influence of any single message on the overall
authentication structure and localizes the security
impact of message loss, thereby enhancing resilience.

  determines the number of messages involved in
computing each authentication bit, i.e., the size of each
dependency set. A larger  improves security by
increasing structural complexity but also increases
computational and memory overhead.

  is associated with the maximum range of message
indices considered when generating the (,)-Sidon
set used to construct candidate dependency sets. A
larger N enables more diverse combinations and
increases the likelihood of satisfying the given , ,
and . As the (,)-Sidon set can be precomputed and
shared in advance between the sender and receiver, 
does not impact runtime computation.

Fig. 1 illustrates the overall process of the proposed
progressive message authentication framework based on the
(,)-Sidon set. When AEAD encryption is applied to the
current plaintext message  , it yields a ciphertext  and an
authentication tag  of length  bits (typically =128). This
tag is then condensed through a MAC aggregation process
into a shorter tag .

In the proposed scheme, the aggregated tag  consists
of two components: immediate protection bits derived directly
from the current tag , and progressive authentication bits
computed using previously stored progressive tags  from
the state . This structure supports partial verification even
in the presence of message loss and progressively strengthens
authentication as more messages are received.

Let the length of  be , and the portion dedicated to
progressive authentication be (< ) . Two types of
condensed tags are computed as follows:

 =⊕=⊕⌊/⌋ []∙:()∙ (1)

 =⊕=⊕⌊/⌋ []∙:()∙ (2)

Here, the operator ⊕ denote the bitwise XOR operation
over the specified bit blocks, and []: represents the bit
segment of the  from bit position  to , inclusive.  is the
bit length of the AEAD tag  , while  and  are the bit
length of  and  , respectively. The notation ⌊∙⌋
indicates the floor function, which returns the greatest integer
less than or equal to its argument.

In the Update State stage (see Fig. 1),  is added to the
state while the oldest entry is discarded, resulting in an
updated state  . The number of elements retained in  is
determined by the maximum value among the elements in the
dependency set  , which will later be selected from the
precomputed (,)-Sidon set. For example, if the maximum
index is , the states are updated as follows:

 = {, ⋯ , }   { , ⋯ , }

If a message cannot be properly received due to
interference, adversarial tampering, or other disruptions, a flag
value (e.g., -1) is stored to mark the entry as invalid. This
mechanism enables efficient identification of missing
messages during aggregation and allows unnecessary
computations to be skipped.

MAC aggregation is performed by the function (∙)
shown in Fig. 1. This function takes as input the previously
accumulated state  and the current tag , and operates
based on the candidate of dependency pool (,), drawn from
the precomputed ( ,)-Sidon set. And a secret key  and
message index  , which are securely shared in advance
between the sender and receiver, are used both to
deterministically generate the AEAD nonce and to seed the
pseudorandom selection of dependency subsets.

The progressive authentication procedure consists of the
following steps:

1. Dependency Set Selection: The set of candidate
dependency subsets, denoted by (,) , is derived
from the precomputed (,)-Sidon set and used as the
pool for constructing actual dependency set. To
ensure sufficient diversity for progressive
authentication, the total number of available subsets

Fig. 1. Generation of aggregated authentication tag in the proposed progressive MAC scheme.

: -th plaintext

: -th ciphertext

: Encryption process

: Secret key

: Associated data

: Aggregation process

: -th authentication tag

: Dependency set

: -th current tag

: -th progressive tag

: -th aggregated tag

…

…

…

…

(-bit)

…

…

…

…

…

…

…

…

(-bit)

(-bit)(-bit)

101

in ( ,)-Sidon set must exceed  . For memory
efficiency, (,) may be composed of subsets with
smaller maximum element values.

2. Randomized Subset Selection: The sender and receiver
use a shared pseudorandom function seeded by the
secret key  to randomly select  subsets without
duplication. These selected subsets form the
dependency set  = {, … ,  } , which remains
fixed as long as  is unchanged.

3. Per-Message Randomization: As required for AEAD
encryption and decryption synchronization, a per-
message nonce shared between the sender and receiver
is used as the seed for a pseudorandom permutation.
The permutation reorders the bits of  to produce .

4. Final Tag Aggregation: Using the permuted tag and the previously accumulated progressive tags
in , the final aggregated tag  is computed as
follows:

 =  ⊕∈ (, ) for 1 ≤  ≤ 
 [] otherwise

(3)
where (, ) =  [] if  = 0  otherwise

Here, [] denotes the single bit at position . In ,
the first  bits correspond to progressive
authentication, while the remaining bits provide
immediate protection.

5. Verification under Partial Authentication: Before
evaluating Eq. (3), any dependency on invalid entries
flagged in  is excluded from computation. The
corresponding bit positions in  are treated as
'don’t care' and excluded from tag verification. The
security threshold is then adjusted to reflect the
reduced number of contributing authentication bits.

Fig. 2 illustrates the tag aggregation process of out
proposed Progressive MAC scheme. It depicts the overall
procedure of generating an aggregated tag, including the
construction of the (,)-Sidon-set-based on parameter setting,
the selection of the dependency set, and the determination of
the accumulated state length. It also shows how the permuted
current tag and progressive tags from selected prior messages
are combined to produce the final aggregated tag.

IV. CONCLUSIONS
This paper presented a progressive message authentication

scheme tailored for real-time, short-length control data in
constrained wireless environments such as drone RC systems.
The proposed method extends existing MAC aggregation
approaches by employing a (,)-Sidon-based dependency
structure that enables control over both inter-bit redundancy
and message index overlap. The scheme separates
authentication bits into immediate and progressive
components, enabling authentication to be progressively
reinforced over time while preserving minimal verification
capability even under message loss.

Future work will involve implementing the proposed
scheme in practical communication environments and
evaluating its performance under realistic wireless conditions.
Particular attention will be given to evaluating the trade-offs
among security, latency, and resource efficiency in the context
of drone control systems.

ACKNOWLEDGMENT
This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.RS-2023-
00225201, Development of Control Rights Protection
Technology to Prevent Reverse Use of Military Unmanned
Vehicles).

REFERENCES
[1] J. Yun, S. Yoon, B. Kim, and Y. Kang, “Applying lightweight

cryptography to enhance drone RC security,” in Proc. 15th IEEE Int.
Conf. Information and Communication Technology Convergence
(ICTC), pp. 1367-1368, Oct. 2024.

[2] E. Wagner, J. Bauer, and M. Henze, “Take a bite of the reality
sandwich: revisiting the security of progressive message authentication
codes,” in Proc. 15th ACM Conf. Security and Privacy in Wireless and
Mobile Networks (WiSec), pp. 207-221, May 2022.

[3] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle
delayed data authentication based on compound message
authentication codes,” in Proc. 68th IEEE Vehicular Technology
Conference (VTC), pp. 1-5. Sep. 2008.

[4] F. Armknecht, P. Walther, G. Tsudik, M. Beck, and T. Strufe,
“ProMACs: progressive and resynchronizing MACs for continuous
efficient authentication of message streams,” in Proc. 2020 ACM
SIGSAC Conf. Computer and Communications Security (CCS), pp.
211-223, Nov. 2020.

Fig. 2. Example of Progressive MAC construction using (,)-Sidon-based
dependencies and accumulated authentication states.

Parameter Setting
,

, ,
,

Construct -Sidon Set

Select Dependency Set

A pseudorandom function
seeded with the secret key is
used to randomly select
subsets in a randomized order.

A pseudorandom permutation of the bit order is generated
using a pseudorandom number seeded by a per-message nonce.

Progressive
authentication bits

Immediate
protection bits

Offline Phase

Online Phase

102

