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Abstract—Electroencephalography (EEG)-based Automatic
Emotion Recognition (AER) has gained increasing attention
as a reliable tool for affective computing. While prior studies
have explored various temporal, frequency, and spatial-domain
representations of EEG signals, few have effectively integrated
these domains within a unified framework. In this paper, we
propose TFSNet, a multi-domain deep learning model that
combines temporal, frequency, and spatial features for robust
emotion recognition. TFSNet consists of a dual-encoder architec-
ture: a temporal encoder based on state-space modeling (S4D),
and a frequency-spatial encoder that leverages CNNs, attention
mechanisms, and graph filtering using a physiologically-informed
adjacency matrix. These domain-specific embeddings are fused
and passed through a classifier for final prediction. Experimental
results on the DREAMER dataset demonstrate that TFSNet
achieves superior performance across Valence, Arousal, and
Dominance emotions, outperforming state-of-the-art models. The
results highlight the effectiveness of combining domain-aware
representations and spatial connectivity priors for EEG-based
emotion recognition and its potential for real-time applications.

I. INTRODUCTION

Emotions are fundamental psychological states that shape
human cognition, decision-making, behavior, and social in-
teractions [1]. With the rapid advancement of artificial intel-
ligence (AI) and Human-Computer Interaction (HCI), Auto-
matic Emotion Recognition (AER) has emerged as a promising
technology that enables machines to understand and respond
to human emotional states, opening up applications in emotion
monitoring [2], [3], user-centered customized services [3],
smart healthcare [2], and Brain-Computer Interface (BCI) [4].

Among physiological signals used for AER, such as electro-
cardiography (ECG) and electromyography (EMG), electroen-
cephalography (EEG) holds distinct advantages [5]. Unlike
peripheral signals, EEG captures direct, real-time electrical
activity in the central nervous system, offering high temporal
resolution and the ability to noninvasively monitor internal
cognitive and emotional processes [2]. As a result, EEG-based
AER has gained growing attention for its potential to reveal
rich insights into human emotional dynamics.

Most prior EEG-based AER studies have relied on medical-
grade datasets like DEAP [6] or SEED [7], collected under
controlled laboratory conditions using expensive equipment.
While these datasets ensure data precision, they limit the scal-
ability and practical deployment of AER systems in real-world,
non-medical settings. Addressing this challenge, we leverage
the DREAMER [8] dataset, recorded using the affordable off-

the-shelf Emotiv EPOC device, to explore robust AER under
practical conditions. The EEG signals in DREAMER dataset
are collected using wireless equipment and portable medical-
grade devices, yet it yields comparable AER results compa-
rable to those from other datasets from expensive medical
equipment. In particular, the dataset includes 14-channel EEG
recordings from 23 participants exposed to 18 audiovisual
stimuli at 128 Hz, with self-reported 5-point ratings on Va-
lence, Arousal, and Dominance dimensions.

Traditional AER approaches primarily employed hand-
crafted feature extraction from physiological signals, including
EEG, in the time or frequency domain, followed by machine
learning classifiers like SVM or KNN [9]. However, due to
the nonlinear and nonstationary nature of EEG, such methods
often struggle to capture the complex patterns underlying
emotional states. Deep learning methods, including convolu-
tional [10] and recurrent neural networks [11], have shown
promise by learning latent representations directly from raw
data. Recent studies have begun to combine multiple domains
- time, frequency, and/or spatial features - to further enhance
model performance, but most existing studies still focus on
single-domain representations.

In this work, we propose TFSNet, a novel multi-domain
EEG-based emotion recognition framework that integrates
temporal and frequency-spatial information. Specifically, TF-
SNet combines an S4D-based [12] temporal encoder for cap-
turing time-domain patterns and a graph filtering-based [13]
frequency-spatial encoder that leverages differential entropy
and physical connectivity between EEG channels. By fusing
these complementary representations, the model aims to ro-
bustly learn emotional dynamics across domains. The main
contributions of this work are summarized as:

• We design a multi-domain EEG emotion recogni-
tion model combining an S4D Temporal encoder and
Frequency-Spatial encoder with graph filtering.

• We integrate temporal and frequency-spatial embed-
dings for final emotion classification, validated on the
DREAMER dataset.

• We demonstrate superior performance over state-of-
the-art model [10], achieving improvements of 1.63%,
1.32%, and 1.34% in Valence, Arousal, and Dominance,
respectively.
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Fig. 1: Architecture of the proposed TFSNet. Temporal, frequency, and spatial EEG features are encoded via dual encoders
(S4D and frequency-spatial encoders), fused, and classified for emotion prediction.

II. RELATED WORK

Early EEG-based AER methods relied on manually ex-
tracting statistical or spectral features from time-domain (TD)
or frequency-domain (FD) signals, followed by classification
using traditional machine learning techniques such as support
vector machines (SVM) [8], k-nearest neighbors (KNN) [9],
decision trees [14], or Naive Bayes [14]. However, due to
the susceptibility of EEG signals to noise and their nonlinear,
nonstationary nature, these approaches often fell short in
capturing the complexity of emotional states.

To address these limitations, deep learning models have
been introduced, enabling automatic extraction of hierarchical
and multi-domain features from EEG signals. Recent methods
combine TD, FD, and time-frequency (TF) features to better
capture the diverse neural signatures of emotion. TD features
reflect temporal dynamics in brain [2], FD features capture
spectral energy distribution (e.g., via power spectral density or
differential entropy) that is converted from TD features into
spectral space [2], [15], and TF features represent nonstation-
ary patterns through techniques like wavelet transforms [16].
More recently, spatial-domain (SD) information, which models
inter-channel structural relationships, has gained attention for
improving recognition performance when combined with other
domains [2].

Several notable models have advanced this field. For ex-
ample, [8] constructs the DREAMER dataset and employs
an SVM classifier with a TD-based RBF kernel. FLD-
Net [17] uses attention-based triple networks to integrate
TD and SD features from multi-channel 3-second EEG seg-
ments. 3DFR [18] constructs three-dimensional representa-

tions combining TD and FD features to capture cross-channel
and cross-frequency interactions, while LEDPatNet19 [19]
applies frequency subband decomposition and fuses origi-
nal and subband-specific features for each EEG channel.
MTCA-CapsNet [20] integrates multi-task learning and cap-
sule networks with channel attention mechanisms, focusing on
TD features. ECNN-C [10] leverages supervised contrastive
learning with efficient TD-based convolutional blocks, and
GECNN [13] fuses FD and TF features, extracting local and
global spatial features using CNNs and graph convolutional
networks.

Despite these advances, most models underexplore the phys-
ical connectivity between EEG channels, an important con-
sideration, as emotional processing emerges from distributed
brain regions. While some methods include spatial relations,
they often simplify adjacency matrices of EEG channels
as binary connections, overlooking meaningful strengths of
physical connectivity.

III. METHOD

A. Overview

In this paper, we propose TFSNet, a multi-domain EEG-
based emotion recognition model that explicitly incorporates
temporal, frequency, and spatial characteristics of EEG signals
and integrates them for emotion classification. TFSNet consists
of three main steps (see Fig 1): (i) extraction of temporal,
frequency, and spatial representations from the input EEG
signals; (ii) independent processing through two encoders - an
S4D-based temporal encoder and a frequency-spatial encoder
combining CNN, attention, and graph filtering; and (iii) fusion
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of high-dimensional embeddings from both encoders, followed
by a binary classifier trained with binary cross-entropy loss.

By combining complementary domain-specific representa-
tions, TFSNet robustly learns the complex emotional dynam-
ics present in EEG signals. Notably, the frequency-spatial
encoder integrates a graph-based adjacency matrix reflecting
inter-channel connection strengths, computed via exponential
distance-based weighting, which can also be set as trainable
for further improvement. This is a key novelty, as most prior
works either overlook this physiological aspect or simplify it
using binary connections.

B. Data Preprocessing and Representation Extraction

We use the DREAMER dataset, which provides EEG and
ECG signals; this study focuses solely on EEG. EEG channels
were arranged according to the international 10− 20 system,
and continuous EEG signals X were segmented into learnable
units using a sliding window of L = 128 points (corresponding
to 1 second). Each n-th segment X(n) consists of C = 14

channels, represented as X(n) = [X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
C ]⊤ ∈

RC×L. To construct multi-domain representations, the EEG
data is preprocessed and transformed in the following three
ways.
Temporal representation. EEG signals reflect dynamic tem-
poral patterns associated with emotional states [2]. To pre-
serve these dynamics and ensure learning stability, we apply
channel-wise Z-score normalization as follows:

x̄i(t) =
xi(t)− µi

σi + ϵ
, (1)

where xi(t) is the raw signal at time t for channel i; µi and
σi are the mean and standard deviation across the time series
of channel i; and ϵ is a small constant to prevent division by
zero. The normalized segment X̄(n)

i is then used to construct
the temporal representation X

(n)
tem of the n-th segment:

X
(n)
tem =

[
X̄

(n)
1 (t), X̄

(n)
2 (t), . . . , X̄

(n)
C (t)

]⊤
. (2)

We note that each segment-level temporal representation X
(n)
tem ,

in the form of RC×L, is used as input to the temporal encoder.
Frequency representation. To capture spectral characteristics,
the normalized temporal representation X

(n)
tem is transformed

into the frequency domain across five standard EEG bands [2]:
δ (1−4 Hz), θ (4−8 Hz), α (8−13 Hz), β (13−30 Hz), and
γ (30− 45 Hz). For each channel i, differential entropy (DE)
values are computed and arranged into 9 × 9 grids G(b) ∈
R9×9, with b ∈ {δ, θ, α, β, γ} being EEG band, aligned with
the physical electrode layout. This results in a 3D tensor per
segment:

X
(n)
freq =

[
G(δ),G(θ),G(α),G(β),G(γ)

]⊤ ∈ R5×9×9. (3)

The frequency representation X
(n)
freq of the n-th segment serves

as input to the frequency-spatial encoder.
Spatial representation. EEG signals are recorded from mul-
tiple brain channels, each having spatial properties determined
by their anatomical locations and inter-regional connections.

Fig. 2: Comparison of spatial adjacency matrices A used
in the frequency-spatial encoder. Binary (left) and Gaussian
(right) adjacency matrices for EEG channels, obtained directly
from the DREAMER dataset and reflecting distance-weighted
spatial connectivity, respectively.

Spatial feature analysis is thus crucial for understanding how
regional interactions influence emotions [2]. To model spatial
relationships, we construct an adjacency matrix A ∈ RC×C

using the physical electrode coordinates (xi, yi) of each chan-
nel i. The Euclidean distance dij between channels i and j
is computed, and the corresponding connection strength Aij

is defined using an exponential distance-based weighting as
follows:

Aij =

{
exp(−dij), if i ̸= j

0, otherwise
(4)

This adjacency matrix captures spatial continuity, assigning
higher weights to closer channels, and is later used in the
graph filtering module of the frequency-spatial encoder. Fig. 2
illustrates an example of a binary adjacency matrix from the
DREAMER dataset and our spatial representation matrix A
obtained from (4).
Label assignment. Finally, for binary emotion classification,
self-reported emotion ratings below 3 are assigned a label of
0, while ratings above 3 are assigned a label 1. All domain-
specific representations of the n-th segment

(
X

(n)
tem ,X

(n)
freq

)
are

linked to the same binary label y(n) ∈ {0, 1}.

C. Domain-specific Encoders

S4D temporal encoder. EEG signals exhibit time-varying pat-
terns that reflect changes in emotional states. To model these
temporal dynamics effectively, we adopt a time-series encoder
based on the State Space Model (SSM) [21], formulated as:

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (5)

where u(t) is the input, x(t) is the latent state, y(t) is
the output, and A,B,C,D are learnable parameter matrices.
Specifically, we employ the S4D architecture [12], which sim-
plifies A to a diagonal matrix, improving modeling efficiency
for long sequences. As shown in Fig. 1, the input temporal
segment X(n)

tem ∈ RC×L in (2) is first projected linearly to a
latent space of dimension dmodel, passed through four stacked
S4D layers, and then aggregated using average pooling to
obtain a fixed-length embedding h

(n)
tem ∈ Rdmodel .
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Frequency-Spatial encoder. Given that EEG channels have
physically structured scalp positions and contain distinct fre-
quency band patterns, we design a frequency-spatial encoder to
jointly model these aspects. In particular, the input frequency
segment X(n)

freq ∈ R5×9×9 in (III-B) is processed by a CNN-
based backbone, complemented by an attention module that
highlights salient regions. The extracted features are fused
via element-wise multiplication, flattened, and projected onto
C = 14 EEG channel nodes, resulting in node-wise feature
vectors of dimension d = 16. We then apply graph filter-
ing [22] using the normalized adjacency matrix Â, defined
as:

Â = D− 1
2AD− 1

2 , H = Â ·X, (6)

where D is the degree matrix, and X ∈ Rb×C×d is the
CNN feature tensor, where b = 5 (number of frequency
bands), C = 14 (number of EEG channels), and d = 16
(node feature dimension). The filtered node features are then
projected into high-dimensional embeddings (dmodel) via a
fully connected layer and averaged across nodes to yield the
final frequency–spatial embedding h

(n)
freq ∈ Rdmodel . See Fig. 1

for details.
Fusion classifier. After obtaining the temporal h

(n)
tem and

frequency-spatial h
(n)
freq embeddings from two encoders, they

are concatenated:

h
(n)
fus =

[
h
(n)
tem ;h

(n)
freq

]
∈ R2dmodel . (7)

This fused vector h
(n)
fus of the n-th segment is fed into a

classifier f : R2dmodel → R to predict the emotion logit
ŷ(n) = f(h

(n)
fus ). This parallel encoding-based fusion structure

of TFSNet allows for preserving domain-specific features
while leveraging complementary temporal and frequency-
spatial information, enhancing robustness in emotion recog-
nition.

D. Training TFSNet

Our model TFSNet is trained for three independent binary
emotion classifications across the Valence, Arousal, and Dom-
inance. The model is implemented with a latent embedding
of size dmodel = 256. The adjacency matrix A used in
the frequency-spatial encoder is either fixed (pre-computed
based on the physical distances of EEG channels) or set as
a learnable parameter, allowing the model to adapt to a more
meaningful graph structure during training. For each emotion
dimension, binary labels y(n) ∈ 0, 1 and predicted logits ŷ(n)

are used to compute the Binary Cross-Entropy (BCE) loss:

LBCE(y
(n), ŷ(n)) = −y(n) log(σ(ŷ(n)))

− (1− y(n)) log(1− σ(ŷ(n))), (8)

where σ(·) is the sigmoid function.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Training configurations. To assess our model TFSNet, we
train the model with DREAMER dataset, using subject-

Model Variant Valence Arousal Dominance

S4D Temporal encoder 86.30 87.88 86.84

Freq-Spatial encoder (fixed A) 98.57 98.11 98.28
Freq-Spatial encoder (learnable A) 98.56 98.10 98.30

TFSNet (fixed A) 98.61 98.14 98.32
TFSNet (learnable A) 98.59 98.17 98.34

TABLE I: Ablation study TFSNet (10-fold average accuracy).
The full model with both encoders consistently outperforms
single-domain variants. Learnable adjacency yields marginal
gains over fixed adjacency.

dependent 10-fold cross-validation, accounting for inter-
subject variability in EEG signals. For each subject, average
performance is computed across folds, and final results are av-
eraged across all subjects. For training, the AdamW optimizer
is used with a learning rate and weight decay of 1× 10−4, a
batch size of 64, and 50 training epochs.
Evaluation metrics. We primarily use accuracy to evaluate
model performance on AER, alongside precision, recall, speci-
ficity, and F1-score for a comprehensive assessment. These are
computed as:

Acc =
TP + TN

TP + TN + FP + FN
, P =

TP

TP + FP
,

R =
TP

TP + FN
, Spec =

TN

TN + FP
, F1 =

2 · P · R
P + R

,

(9)

where TP, TN, FP and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
Given the clinical nature of AER, metrics such as recall and
F1-score are particularly critical, as failing to correctly detect
positive cases may lead to adverse medical consequences.

B. Ablation Study

In Table I, we report the 10-fold average accuracy across
Valence, Arousal, and Dominance dimensions for different
module configurations. TFSNet, which integrates the S4D
temporal encoder and frequency-spatial encoder in parallel,
consistently achieved the highest performance across all emo-
tions. While the S4D temporal encoder alone shows rela-
tively lower accuracy (Valence: 86.30%, Arousal: 87.88%,
Dominance: 86.84%), combining it with the frequency-spatial
encoder boosted accuracy beyond 98%. Since our experiments
are conducted within the subject-dependent, 10-fold cross-
validation settings, where only a few segments are available
for training, S4D temporal encoder struggles from insufficient
temporal patterns, resulting in poor performance compared
to the frequency-spatial encoder that uses global information.
The results obtained in our experiments suggest that short-
length sequences alone may be unable to capture the complex
temporal changes in emotional states, yet TFSNet trained with
both encoders still improves performance.

Table II summarizes the quantitative performance of TF-
SNet with fixed and learnable adjacency matrices A, re-
spectively. Both configurations achieve consistent and robust
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Metric Fixed A Learnable A

Valence Arousal Dominance Valence Arousal Dominance

Accuracy 98.61 ± 1.32 98.14 ± 1.87 98.32 ± 1.74 98.59 ± 1.35 98.17 ± 1.84 98.34 ± 1.69
Precision 98.48 ± 1.98 97.96 ± 2.74 98.12 ± 2.36 98.45 ± 2.00 97.97 ± 2.74 98.15 ± 2.28

Recall 98.10 ± 2.38 97.85 ± 2.70 98.68 ± 1.58 98.06 ± 2.48 97.92 ± 2.64 98.71 ± 1.62
Specificity 98.92 ± 1.43 98.08 ± 2.41 97.59 ± 3.35 98.90 ± 1.46 98.11 ± 2.33 97.60 ± 3.21
F1-Score 98.27 ± 1.72 97.88 ± 2.20 98.38 ± 1.56 98.23 ± 1.77 97.92 ± 2.18 98.41 ± 1.53

TABLE II: Performance (accuracy) comparison of TFSNet with fixed and learnable adjacency matrices. Learnable adjacency
(right) consistently outperforms fixed adjacency (left) across multiple metrics. Bold numbers indicate the better value for each
metric.

Model Representations Accuracy

Time Freq. Spatial Valence Arousal Dominance

SVM [8] ✓ 62.49 62.17 61.84
FLDNET [23] ✓ 89.91 87.67 90.28

3DFR [18] ✓ 93.15 91.30 92.04
LEDPatNet19 [19] ✓ 94.44 94.58 92.86

MTCA-CapsNet [20] ✓ 95.54 94.96 95.52
ECNN-C [10] ✓ 97.03 96.89 97.04

TFSNet (fixed A) ✓ ✓ ✓ 98.61 98.14 98.32
TFSNet (learnable A) ✓ ✓ ✓ 98.59 98.17 98.34

TABLE III: Evaluation of single- and multi-domain emotion recognition models on the DREAMER dataset (average accuracy).
TFSNet variants outperform prior methods across all emotion types. Best results are in bold, second-best are underlined.

classification across all metrics, with mean accuracies above
98% for all emotion classes. Notably, precision, recall, speci-
ficity, and F1-scores remain high even under class imbalance,
confirming the robustness of our model TFSNet. The minor
performance difference between using fixed versus learnable
adjacency matrices A in (4) suggests that initial physical
connectivity already encodes meaningful domain knowledge,
but additional learning of adjacency weights brings marginal
gains in emotion recognition from EEG signals.

C. Comparison with Baselines

We compare TFSNet against several state-of-the-art mod-
els under the same experimental conditions, i.e., subject-
dependent 10-fold cross-validation, 1-second sliding window,
binary emotion classification. As shown in Table III, TF-
SNet outperforms both traditional machine learning mod-
els (e.g., SVM [8]) and recent deep learning approaches
(e.g., FLDNet [23], 3DFR [18], LEDPatNet19 [19], MTCA-
CapsNet [20], and ECNN-C [10]), achieving the highest ac-
curacy across all emotion classes (Valence: 98.61%, Arousal:
98.17%, Dominance: 98.34%). In particular, TFSNet shows
over 5% improvement compared to SVM and substantial
gains over multi-domain models like 3DFR, demonstrating the
strength of integrating temporal, frequency, and spatial features
with graph-based connectivity modeling. This superior perfor-
mance stems not merely from structural complexity but from
TFSNet’s ability to comprehensively analyze the multifaceted
characteristics of emotional states. Unlike models that focus
solely on a single aspect of EEG signals, this approach

integrates information from three mutually complementary
domains: temporal, frequency, and spatial.

V. CONCLUSION

This paper introduces TFSNet, a dual-encoder neural ar-
chitecture that integrates temporal, frequency, and spatial
information for EEG-based emotion recognition. The model
leverages a state-space (S4D) temporal encoder and a fre-
quency–spatial encoder that includes CNNs, attention mech-
anisms, and graph filtering based on learnable inter-channel
distances. Experimental results on the DREAMER dataset
demonstrated that TFSNet consistently outperforms existing
approaches across three emotional dimensions. The results
validate the benefit of combining complementary domain
features and incorporating physiologically-grounded spatial
priors for the precision of EEG-based emotion recognition.
Future work includes extending this framework to subject-
independent settings and exploring its ability to generalize
across larger EEG emotion datasets.
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