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Abstract—Satellite-terrestrial integrated networks (STINs) are
essential for sixth-generation wireless technology (6G) global
connectivity, but the low Earth orbit (LEO) satellites’ scale and
mobility create resource management challenges with frequent
handovers and limited spectrum. This yields a complex control
problem where handover decisions and resource scheduling
are tightly coupled, exceeding conventional optimization and
standard reinforcement learning (RL) capabilities. We propose
a hierarchical reinforcement learning (HRL) framework that
decouples this problem through coordinated high-level handover
control and low-level resource scheduling policies. Simulations
show our HRL approach surpasses non-hierarchical RL and
conventional methods, significantly reducing handovers and in-
creasing throughput in dynamic STINs.

Index Terms—satellite communication, handover, resource al-
location, hierarchical reinforcement learning.

I. INTRODUCTION

The emerging sixth-generation wireless technology (6G)
is driving satellite-terrestrial network integration for global
connectivity [1]. While satellite—terrestrial integrated networks
(STINs) with low Earth orbit (LEO) satellites provide low
latency and high throughput, satellite mobility and network
scale create resource management challenges: frequent user
handovers and limited spectrum/power sharing [2]. Since han-
dover decisions depend on resource availability and schedul-
ing affects handover-induced quality loss, this coupled high-
dimensional control problem exceeds traditional and flat rein-
forcement learning (RL) capabilities. We propose a hierarchi-
cal reinforcement learning (HRL) framework with coordinated
high-level handover control and low-level resource scheduling
policies. Simulations demonstrate superior performance over
non-hierarchical RL and conventional methods, reducing han-
dovers while increasing throughput in dynamic STINs.

II. RESOURCE ALLOCATION AND HANDOVER CONTROL
FOR HIERARCHICAL REINFORCEMENT LEARNING

A. Satellite-Terrestrial Coexistence Scenario

This paper considers the downlink communication scenario
in a network where the terrestrial network and the satellite
network coexist, as shown in Fig. 1. In this scenario, the LEO
satellite network and the terrestrial base station (GBS) have
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Fig. 1: System model.

partially overlapping bandwidths. Therefore, efficient utiliza-
tion of frequency resources and interference management are
crucial.

B. Proposed Hierarchical Reinforcement Learning Algorithm

This paper presents a HRL framework for joint handover
and resource allocation optimization in wireless networks, tar-
geting maximum throughput with minimal handover frequency
through intelligent resource block allocation. The framework
employs a two-tier architecture: a high-level agent selecting
handover targets and a low-level agent managing bandwidth
allocation. Both levels are formulated as Markov decision
processes (MDPs) with the following specifications:

1) State: The high-level and low-level agents share a com-
mon state representation. The state at time ¢ is defined
as s; = [cy,8¢,ds, ty, vy], where ¢; € {0,1}" denotes
the connection status vector for N users, s, € RV*3
represents the received signal reference power (RSRP)
measurements, d, € RY indicates the throughput vector,
t, € RN represents the connection duration vector, and
v; € RY denotes the relative velocity vector.

2) Action: The high-level agent is responsible for mobility
management and determines the handover policy by se-
lecting a discrete action a;(t) € {0,1}, where a;(t) =1
triggers a handover to the highest RSRP cell, while
a;(t) = 0 indicates maintaining the current connection.
Following this decision, the low-level agent produces a
continuous vector u(t) € R®, which is assigned to the
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Fig. 2: Comparison of throughput performance and handover
frequency.
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Fig. 3: Normalized average reward per training episode.

fractions of bandwidth per cell and the placements of
the subband for the users of each beam.

3) Reward: The high-level and low-level agents utilize
a common reward function that reflects a trade-off
between two conflicting objectives: connection duration
and data throughput. The reward function is formulated
as follows,

R(t) = w1 T(t) + w2 D(2), (1)

where T'(t) and D(t) denotes the average connection
duration time and average data throughput, respectively.
The weighting factors w; and wo are design parameters
that determine the relative importance of the two ob-
jectives and can be tuned according to specific system
requirements or performance priorities.

III. PERFORMANCE EVALUATION

Table I summarizes the simulation parameters for the per-
formance evaluation of the proposed method, while the hyper-
parameters used for training are presented in Table II. The
simulations were conducted on a system equipped with an
AMD Ryzen 7900X CPU and an NVIDIA GeForce RTX 4070
Super GPU.

To evaluate the performance of the proposed scheme, we
define the two benchmarks: 1) a conventional measurement-
based handover scheme with random resource division and 2)

TABLE I: Simulation environment parameters

Parameter Value

Altitude of the LEO satellite 600 km
The frequency bandwidth of LEO | 19.9 ~ 20.2 GHz

The beam radius of LEO 25 km
The frequency bandwidth of GBS | 20.0 ~ 20.2 GHz

The inter-site distance of GBS 7500 m

TABLE II: HRL simulation parameters

Parameter Value
Discount factor ~ 0.99
Learning rate 0.0001
Batch size 64 episode
Buffer size 1000 episode

an RL-based handover scheme with random resource division.
The convergence of the proposed scheme is first demonstrated
in Fig. 3, which illustrates the cumulative reward over training
episodes. This shows that the proposed scheme converges to
an optimal policy after 4000 episodes. Based on this stable
learning, Fig. 2 shows the average data throughput and the
handover frequency during an episode. The results indicate
that our proposed HRL scheme provides the highest data
throughput with the lowest handover frequency. It can be
observed that the proposed HRL scheme guarantees the best
data throughput by dynamically allocating frequency resources
while minimizing the effects of interference between the
terrestrial and satellite networks.

IV. CONCLUSIONS

In this paper, we proposed a HRL framework to solve the
coupled resource scheduling and handover control problem in
STINs. By decomposing the task into high-level handover and
low-level scheduling policies, our approach was shown via
simulation to significantly reduce handover frequency while
increasing user throughput. The results validate our HRL
framework as a robust and effective solution for resource
management in next-generation integrated networks, outper-
forming both conventional and non-hierarchical RL methods.
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