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Abstract—In this conference paper, we introduce a ray tracing 
algorithm for low Earth orbit satellite communications where 
an inhomogeneous plane wave propagates. We analyze our 
approach in terms of its physical meaning founded on the well-
known ray tracing methods in lossy media that is previously 
proposed. We organize some mathematical formulations using 
the complex Snell’s law and incorporate the two numerical 
methods.  
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I. INTRODUCTION  
In recent years, there has been growing interest on 

leveraging the low Earth orbit (LEO) satellites – the essential 
systems for implementing the non-terrestrial networks 
(NTNs) – to provide seamless communication services to end-
users, particularly in research area on 5G wireless 
communication systems. Furthermore, the LEO satellites offer 
key advantages in realizing low latency, extensive coverage 
for the upcoming next-generation wireless communication 
systems [1]. Electro-magnetic waves radiated from the 
transmit antennas mounted on the LEO satellites are subject 
to atmospheric refraction and attenuation. These atmospheric 
phenomena can degrade the performance of the 
communication, thereby reducing the quality of service 
(QoS). Therefore, to mitigate the impact of the atmosphere on 
the communications and to ensure an efficient, optimized 
operation of the LEO-based systems, it is necessary to develop 
a model how the electromagnetic waves propagate and reach 
to the receiver.  

Due to the phenomena of refraction and attenuation when 
the wave propagates, the atmosphere of the Earth can be 
characterized as a lossy medium, with the extent of these 
effects governed by its complex-valued atmospheric refractive 
index. This refractive index is determined by meteorological 
factors such as pressure, temperature, relative humidity and 
waterfall rate [2,3]. In other words, the atmospheric property 
varies with altitude and horizontal space. This observation 
allows the atmosphere to be viewed as a stratified structure, 
which can be divided into numerous layers based on those 
varying characteristics. With this understanding, a ray tracing 
is considered as a suitable numerical analysis method to 
describe the propagation of the electromagnetic waves, given 
the large spatial scale of the atmospheric domain [4]. 
However, to the best of our knowledge, there has been no 

rigorous investigation into their underlying mathematical 
formulations nor any detailed description of the ray tracing 
algorithm for inhomogeneous plane wave. 

Radcliff and Balanis established the theoretical basis for 
the propagation of inhomogeneous plane wave in lossy media 
[5]. The key concept of their approach was to modify the 
propagation constants to avoid intricacy when solving the 
complex Snell’s law, while maintaining the physical 
interpretability of the wave behavior. Chang and their 
colleagues proposed a ray tracing method in lossy media by 
considering a relationship between the complex wave vector 
and the refractive index [6]. Chang’s pioneering work on the 
complex ray tracing has served as a foundational reference, 
with many subsequent studies citing and building upon it on 
applying the method to their various research [7,8,9]. 

 However, to the best of our understanding, while Chang’s 
work presents theoretical insights, it does not appear to 
provide detailed explanations of the ray tracing algorithm 
itself, and raises the possibility that the physical interpretation 
of wave refraction might not be fully preserved—particularly 
in our study on the Earth’s atmospheric refractivity. 
Moreover, many research works adopt the mathematical 
representations formulated by Chang’s work almost 
unchanged and without providing any explanation as to the 
reasoning behind its derivation. In contrast, Ballington and 
Hesse provided a derivation of the propagation direction 
formula—originally presented in Chang’s work—in the 
appendix of their study on light scattering by large particles, 
in which they also introduced a backward ray tracing 
algorithm as opposed to the forward ray tracing method [7].  

In this work, we provide detailed derivations of the 
mathematical representations that describe wave refraction, 
incorporating both Radcliff’s and Chang’s approaches. 
Furthermore, we present the results of applying the ray tracing 
algorithm to an inhomogeneous plane wave propagation in a 
lossy medium with a simple example. Specifically, we 
introduce 2x2 grid structure in a two-dimensional Cartesian 
coordinate system and assume a ray propagation within a 
medium whose refractive index includes an imaginary 
component on the order comparable to that of atmospheric 
refractive index [10]. Here, we assume that each 2D square-
shaped stratified structure is an isotropic, linear, charge-free, 
and homogeneous medium. The time-harmonic convention 
used throughout this work is 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗. The tilde indicates physical 
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quantities that are complex-valued and boldface denotes 
vector quantities. 

II. FUNDAMENTALS AND DERIVATIONS 

A. Characteristic Relations in a Lossy Medium 
A lossy medium can be characterized with the complex 

refractive index 𝑛̃𝑛 = 𝑛𝑛 − 𝑗𝑗𝑗𝑗, which is related to the relative 
permittivity as shown below, revealing that the permittivity 
takes a complex form, 

 𝜀𝜀̃ = 𝜀𝜀𝑟𝑟𝜀𝜀0 − 𝑗𝑗 𝜎𝜎
𝜔𝜔 = 𝜀𝜀0𝑛̃𝑛2   () 

Wave vector 𝒌̃𝒌 is represented as a complex quantity in lossy 
media, allowing the separation of the direction of phase 
propagation and the direction of attenuation. These directions 
correspond to vectors normal to the surfaces of constant 
phase 𝒆̅𝒆 and constant amplitude 𝒇̅𝒇, respectively. A plane wave 
in which these two vectors are not aligned is called an 
inhomogeneous plane wave. When a homogeneous plane 
wave impinges on a lossy medium, it propagates as an 
inhomogeneous plane wave within the medium. 

 𝒌̃𝒌 = 𝑁𝑁𝒆̅𝒆 − 𝑗𝑗𝑗𝑗𝒇̅𝒇 () 

where N and K are apparent refractive indices [6]. Complex-
valued atmospheric refractivity 𝑁𝑁  and its associated 
atmospheric refractive index 𝑛̃𝑛  are expressed by following 
equation (3). This implies that the atmosphere of the earth can 
be modeled as a lossy medium and that wave propagation 
occurs in the form of inhomogeneous plane waves at altitudes 
where the meteorological phenomena take place, 

 𝑛̃𝑛 = 1 + 𝑁𝑁 × 10−6 ppm]. () 

From studies on atmospheric refractive‐index modeling [10], 
we found that the imaginary part of the complex refractive 
index is on the order of 10−7  or smaller. Based on this 
magnitude, we implemented a ray tracing algorithm that 
accounts for absorption.  

To describe propagation of the inhomogeneous plane 
wave under the framework of geometrical optics, the 
propagation constant must be determined. Following 
Radcliff’s previous work,  intrinsic propagation constant of 
each medium, 𝛾𝛾0 is computed from its electrical conductivity 
𝜎𝜎k, angular frequency 𝜔𝜔, and the complex relative permittivity 
𝜀𝜀k̃ as shown below, for the case where two media form a 
planar interface. 

 𝛾𝛾0k = √(𝜎𝜎k + 𝑗𝑗𝑗𝑗𝜀𝜀k̃)(𝑗𝑗𝑗𝑗𝜇𝜇0) = 𝛼𝛼0k + 𝑗𝑗𝛽𝛽0k () 

where k = 1, 2 and  𝜸𝜸0k = j𝒌̃𝒌. Equations (1), (3) and (4) 
suggest that, once the atmospheric refractivity is evaluated, 
the electrical conductivity and complex relative permittivity 
of each subdivided square-shaped stratified structure can be 
obtained. These parameters yield the intrinsic propagation 
constant of each medium, which subsequently allows for the 
computation of the modified propagation constant introduced 
in Radcliff’s work. 

B. Modified Propagation Constants 
Snell's law is derived by applying the phase-matching 

condition at a planar interface. Consequently, it yields two 

separate expressions: one for the propagation constant 𝛼𝛼k , 
which accounts for attenuation of the wave, and another for 
the propagation constant 𝛽𝛽k, which governs the direction of 
wave propagation. 

  
(a) (b) 

Fig. 1. Illustration of ray propagation at a planar interface: (a) transition 
from a lossless to a lossy medium, and (b) propagation behavior within 
the lossy medium. For clarity, only the incident and transmitted rays are 
shown. A homogeneous plane wave, incident from a lossless medium, 
becomes an inhomogeneous plane wave upon encountering a lossy 
medium. 

 𝛼𝛼01sin(𝜁𝜁1 + 𝜌𝜌1) = 𝛼𝛼2 sin(𝜁𝜁2 + 𝜌𝜌2) () 

 𝛽𝛽01sin 𝜁𝜁1 = 𝛽𝛽2 sin 𝜁𝜁2 () 

 𝛼𝛼2
2 − 𝛽𝛽2

2 = 𝛼𝛼02 
2 − 𝛽𝛽02

2  () 

 𝛼𝛼2𝛽𝛽2 cos 𝜌𝜌2 = 𝛼𝛼02𝛽𝛽02 () 

where 𝛾𝛾k = 𝛼𝛼k + 𝑗𝑗𝛽𝛽k  and 𝛾𝛾k  denotes the modified 
propagation constant.  

 𝛼𝛼1 =  𝛼𝛼01 sin(𝜁𝜁1 + 𝜌𝜌1) () 

 𝛽𝛽1 =  𝛽𝛽01 sin 𝜁𝜁1 () 

By applying Equation (9), the equation (5) can be rewritten 
in an alternative form; similarly, the equation (6) is 
reformulated using Equation (10), as follows. 

 sin(𝜁𝜁2 + 𝜌𝜌2) = 𝛼𝛼1
𝛼𝛼2

 () 

 sin 𝜁𝜁2 = 𝛽𝛽1
𝛽𝛽2

 () 

 cos(𝜁𝜁2 + 𝜌𝜌2) = √1 − sin2(𝜁𝜁2 + 𝜌𝜌2)  () 

 cos 𝜁𝜁2 = √1 − sin2 𝜁𝜁2  () 

Substituting equations (11) through (14) into equation (8) and 
applying trigonometric identities, a relationship is then 
derived between the modified propagation constants in the 
two media and the intrinsic propagation constant of the second 
(transmitting) medium as follows, 

 (𝛼𝛼1𝛽𝛽1 − 𝛼𝛼02𝛽𝛽02)2 = (𝛼𝛼2
2 − 𝛼𝛼1

2)(𝛽𝛽2
2 − 𝛽𝛽1

2) () 

 A quartic equation form for 𝛼𝛼2  emerges by substituting 
equation (16) into equation (7) as below, 
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𝛼𝛼2
4 − [𝛼𝛼1

2 + 𝛽𝛽1
2 + 𝛼𝛼02

2 − 𝛽𝛽02
2 ]𝛼𝛼2

2 + 𝛼𝛼1
2𝛽𝛽1

2 

+(𝛼𝛼02
2 − 𝛽𝛽02

2 )𝛼𝛼1
2 − (𝛼𝛼02𝛽𝛽02 − 𝛼𝛼1𝛽𝛽1)2 = 0. 

() 

      By replacing 𝛼𝛼2
2 with 𝑋𝑋 , the quartic equation is 

transformed into a quadratic form, allowing the application of 
the discriminant method to derive an explicit expression for 
𝛼𝛼2

2, 

 𝑋𝑋2 − 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 () 

where 𝑏𝑏 = 𝛼𝛼1
2 + 𝛽𝛽1

2 + 𝛼𝛼02
2 − 𝛽𝛽02

2  and 𝑐𝑐 =  𝛼𝛼1
2𝛽𝛽1

2 + (𝛼𝛼02
2 −

𝛽𝛽02
2 )𝛼𝛼1

2 − (𝛼𝛼02𝛽𝛽02 − 𝛼𝛼1𝛽𝛽1)2  and the results for modified 
propagation constants in transmitting medium are consistent 
with those derived by Radcliff. That is, equations (18) and 
(19) in Radcliff’s work can be interpreted as solutions to a 
nonlinear system derived from a set of four coupled first-order 
equations. 

 

  

(a)  (b) 

Fig. 2. Illustrations for our simulation scenario. The phase vector 𝒆̅𝒆 and 
attenuation vector 𝒇̅𝒇 can be represented based on the previously derived 
refraction angles 𝜁𝜁2 , 𝜌𝜌2.  Each medium is distinguished by its planar 
planes such as x or y-plane. 𝑛̅𝑛 stands for unit vector normal to the planar 
interface. Subscription of the vectors means incident ray and transmitted 
ray, respectively. 

III. RAY TRACING METHOD 

A. Scenario Descriptions and Algorithm  
In a two-dimensional (2D) scenario, we assume that the 

atmosphere can be discretized into square-shaped small cells, 
and the electric field is polarized in the TE polarization. This 
setup is chosen to examine the ray refraction in the most 
intuitive manner, while the validity of the approach remains 
valid regardless of the polarization. Under these scenario, the 
planar interfaces of the media can be aligned with either the x- 
or y-plane. Therefore, we classify the analysis into two cases, 
depending on whether the electric field intersects the x-plane 
or the y-plane. This classification allows us to define vectors 
normal to the interface accordingly, enabling the phase and 
attenuation vectors to be expressed in terms of the refraction 
angle. 

 𝜁𝜁2 = sin−1 (𝛽𝛽01
𝛽𝛽2

sin 𝜁𝜁1) () 

 𝜌𝜌2 = sin−1 [𝛼𝛼01
𝛼𝛼2

sin(𝜁𝜁1 + 𝜌𝜌1)] − 𝜁𝜁2 () 

• Case 1: Ray intersects with the x-plane (vertical) 

 𝑒̅𝑒𝑡𝑡 = ± cos 𝜁𝜁2 𝑥̂𝑥 + sin 𝜁𝜁2 𝑦̂𝑦 () 

 𝑓𝑓𝑡̅𝑡 = ± cos(𝜁𝜁2 + 𝜌𝜌2) 𝑥̂𝑥 + sin(𝜁𝜁2 + 𝜌𝜌2) 𝑦̂𝑦 () 

• Case 2: Ray intersects with the y-plane (horizontal) 

 𝑒̅𝑒𝑡𝑡 = sin 𝜁𝜁2 𝑥̂𝑥 ± cos 𝜁𝜁2 𝑦̂𝑦 () 

 𝑓𝑓𝑡̅𝑡 = sin(𝜁𝜁2 + 𝜌𝜌2) 𝑥̂𝑥 ± cos(𝜁𝜁2 + 𝜌𝜌2) 𝑦̂𝑦 () 

where the sign preceding the cosine term is determined by the 
propagation direction of the incident ray. 

Algorithm 1 Ray Tracing in Atmospheric Environment 

 input: atmospheric refractive index of two media 𝑛̃𝑛1, 
𝑛̃𝑛2, origin P of ray, direction vector of incident ray 
𝒆̅𝒆i, 𝒇̅𝒇i, initial electric field 𝑬𝑬(1) 

 output: direction vector 𝒆̅𝒆i, 𝒇̅𝒇i, electric field 𝑬𝑬(𝑛𝑛+1), 
arrival point A of ray  

1 : calculate: properties of the stratified atmosphere 
such as conductivity 𝜎𝜎, relative permittivity 𝜀𝜀𝑟𝑟  

2 : while rays exist do 

3 : set threshold to amplitude of updated E field  

4 : if no rays to trace or |𝑬𝑬(𝑛𝑛+1)| < threshold 

break 
end if 

5 : set ray’s initial information : origin P, direction of 
phase and attenuation 𝒆̅𝒆i, 𝒇̅𝒇i, and electric field 𝑬𝑬(𝑛𝑛) 

6 : find intersection point given direction and origin 
of incident ray  

7 : calculate the modified propagation constant 𝛾𝛾k 
and refraction angle 𝜁𝜁2  and 𝜌𝜌2  by the complex 
Snell’s law 

8 : determine direction vectors of transmitted ray 
𝒆̅𝒆t, 𝒇̅𝒇t , 𝑬𝑬(𝑛𝑛+1) with attenuation and phase delay 

9 :  update 𝒆̅𝒆i ←  𝒆̅𝒆t, 𝒇̅𝒇i ←  𝒇̅𝒇t, 𝑬𝑬(𝑛𝑛+1) ← 𝑬𝑬(𝑛𝑛), P ← 𝐴𝐴 

10 : end while 

IV. RESULT AND CONCLUDING REMARKS 
In this work, we provide detailed derivations of the 

methods introduced by previous researchers and incorporate 
them to apply ray tracing method to the Earth’s atmospheric 
environment, which is characterized by complex refractive 
index with a negligible imaginary component. The ray 
originates from a homogeneous plane wave under the 
assumption that the stratospheric medium is lossless. This is 
justified by the fact that, at higher altitudes, meteorological 
phenomena are minimal and the atmosphere can be 
approximated as a near vacuum due to the trivial presence of 
water vapor and gas molecules.  

As shown in figure 3, when 𝜎𝜎2 increases toward value of 
𝜎𝜎1, the conductivity contrast between the two media vanishes, 
causing the inhomogeneity of the transmitted ray to diminish 
and approach to zero. Conversely, when 𝜎𝜎2 falls below 10⁻⁵, 
𝜌𝜌2  converges toward 90° and saturates, signifying the 
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situation in which the conductivity of medium 1 vastly 
exceeds that of medium 2 and thus no attenuation occurs along 
the phase direction. When the value for medium 2 exceeds that 
for medium 1, inhomogeneity reappears, its magnitude 
initially increasing before decreasing. This corresponds to 
attenuation along the propagation direction gradually 
increasing, and when 𝜎𝜎2 increases to near 10⁻¹, as the plane 
wave restore its homogeneity, attenuation in the propagation 
direction reaches its maximum. 

 

 

Fig. 3. This figure depicts 𝜌𝜌2—decomposed into its real and imaginary 
parts and plotted in degrees—as 𝜎𝜎2 is varied for two media in contact at 
a planar interface, with 𝜎𝜎1 held constant as 10⁻⁵. Here, 𝜎𝜎1 stands for 
electric conductivity of medium 1 whereas medium 2 has electric 
conductivity 𝜎𝜎2.  

 

Fig. 4. Example illustration of inhomogeneous plane wave propagation 
for simple structures using ray tracing algorithm. A homogeneous plane 
wave becomes inhomogeneous when it propagates through a lossy 
medium. The numbers shown in this figure correspond to distinct media 
and refractive index of each media is 1 + 10−8, 2 + 2 × 10−8, 3 + 3 × 10−7 and 
4 + 4 × 10−7, respectively.  

The homogeneity of the rays breaks immediately upon 
entering into the lossy medium, forming an inhomogeneous 
plane wave as a result in figure 4. This phenomenon is well-
established in prior studies. Moreover, according to the 
complex Snell’s law, the attenuation vector becomes aligned 
with the normal vector at the planar interface of the medium, 
which is consistent with the findings in [11, 12]. In addition, 
the complex Snell’s law links the transmitted attenuation 
vector to the previous angle of incidence encountered at the 

interface. Therefore, as the wave continues to propagate, this 
causes the attenuation vector to roughly follow the direction 
of the phase vector. Then, the plane wave maintains its 
inhomogeneity as it propagates through the medium. When 
the ray propagates from medium 1 into medium 3, the 
imaginary part of the refractive index differs by a factor of ten, 
and by Snell’s law this causes the angle between the 
attenuation vector and the interface normal to be small. 
Subsequently, as the ray enters medium 4 from medium 3—
where the imaginary parts of the refractive indices are of the 
same order—the angle between the attenuation vector and the 
normal increases during propagation.  

Given that earth’s atmosphere can be regarded as a lossy 
medium, such inhomogeneous propagation may contribute to 
attenuation and boresight errors in using LEO satellites to 
communication systems. Future work will incorporate the ray 
tracing algorithm into a larger number of stratified structures 
to model wave propagation in the atmospheric environment 
with greater precision. To enable the development of efficient 
LEO satellite communication systems, this involves levera-
ging atmospheric refractivity modeling techniques such as 
MPM93 to perform high-resolution interpolation and predict-
ion of refractive index profiles, thereby enabling accurate 
modeling of a more finely layered atmosphere. 
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