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Abstract—Fine-resolution Synthetic Aperture Radar (SAR)
data is crucial for many geospatial applications but is often
limited by high cost and accessibility. This study introduces
a novel deep learning framework to generate high-resolution
SAR imagery, stylistically equivalent to COSMO-SkyMed, from
freely available Sentinel-1 data. To mitigate inherent sensor
discrepancies, our comprehensive pipeline performs precise co-
registration, radiometric calibration, and domain adaptation to
bridge the spectral and structural differences between the C-band
and X-band inputs. The core of our framework is a multi-scale
conditional GAN, inspired by Pix2pixHD, which uses a coarse-
to-fine generator and multi-scale discriminators with a composite
loss function to reconstruct detailed SAR textures. Our model not
only surpasses existing baselines on key image quality metrics
(SSIM, PSNR, DISTS) but also demonstrates tangible practical
value. When integrated into a downstream water body detection
pipeline, the super-resolved images achieved an Intersection-over-
Union (IoU) score exceeding 70%, enabling significantly more
precise mapping than possible with original low-resolution data.
This work validates deep learning-based super-resolution as a
scalable and cost-effective pathway to produce high-fidelity SAR
data, effectively democratizing access for critical applications like
flood monitoring and disaster assessment.

Index Terms—SAR super-resolution, COSMO-SkyMed,
Sentinel-1, water body detection, deep learning, remote sensing.

I. INTRODUCTION

Satellite-based remote sensing is a critical tool for observ-
ing the Earth’s surface and atmosphere, supporting diverse
applications ranging from environmental monitoring to urban
planning. Among the various sensor types, Synthetic Aperture
Radar (SAR) stands out due to its all-weather, day-and-night
imaging capabilities, allowing for the detection of subtle sur-
face changes and the generation of high-contrast imagery even
under low-visibility conditions [1]. These advantages make
SAR essential for tasks such as monitoring ice sheets, detect-
ing pollution, and assessing infrastructure [2]. Despite its ben-
efits, integrating SAR data across different satellite platforms
presents significant challenges. Variations in frequency bands,
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spatial resolutions, and acquisition parameters introduce in-
consistencies that hinder seamless analysis. While Sentinel-
1 provides extensive coverage, many applications—such as
accurate water body detection for flood management and
hydrological modeling—require the finer spatial detail avail-
able from higher-resolution systems like COSMO-SkyMed.
Bridging this resolution and domain gap in a cost-effective
manner remains a pressing research goal. Recent advances in
deep learning, especially in Convolutional Neural Networks
(CNNs) [3], Generative Adversarial Networks (GANSs) [4] [5],
and Transformer-based architectures [6] [7], have significantly
advanced the field of image super-resolution. However, most
work to date has focused on optical imagery, whereas SAR
data presents unique challenges. Destructive speckle noise can
be misinterpreted as fine texture by generative models, and
significant domain shifts between frequency bands can hinder
model generalization. Furthermore, the scale and diversity of
SAR datasets impose computational burdens, necessitating ro-
bust, data-driven methods that incorporate band normalization,
speckle noise reduction, and domain adaptation. In response,
this paper proposes a novel deep learning framework to
generate high-resolution COSMO-SkyMed-like SAR images
from Sentinel-1 inputs. We leverage GANs and Transformer-
based models for their complementary strengths in texture syn-
thesis and modeling long-range dependencies. Our approach
explicitly addresses key SAR-specific challenges, including
speckle suppression, cross-band discrepancies, and large-scale
data tiling. The main contributions of this study are as follows:
(1) A systematic and reproducible end-to-end data preparation
pipeline to harmonize Sentinel-1 and COSMO-SkyMed data,
addressing critical inconsistencies; (2) A novel hybrid deep
learning architecture that synergizes GANs and Transformers,
specifically tailored to reconstruct SAR textures while pre-
serving structural integrity; (3)Comprehensive validation of
the proposed framework through both objective metrics and
perceptual quality assessment, confirming the generation of
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Fig. 1. Proposed Model’s Architecture

high-fidelity SAR images; and (4) A practical demonstration
of the framework’s real-world utility, where the super-resolved
outputs significantly improve the accuracy of surface water
body detection for environmental monitoring.

II. PROPOSED METHODS
A. Pre-processing

Our study employs a systematic, multi-stage pre-processing
pipeline to harmonize Sentinel-1 and COSMO-SkyMed data,
ensuring the deep learning model focuses on meaningful
texture synthesis rather than compensating for sensor-specific
physical discrepancies. The process begins with precise geo-
metric co-registration to a common geodetic reference frame,
followed by radiometric calibration to convert pixel values
into normalized radar cross-sections for consistent backscat-
ter measurements. To further align the statistical properties,
we then apply histogram matching as a final radiometric
harmonization step. Subsequently, we address SAR-specific
artifacts by applying a light speckle filter (e.g., a 3x3 Lee
filter) and aligning all data to a consistent polarization channel
(e.g., VV). This critical early-stage filtering is intended to
reduce inherent speckle noise before it can be amplified by
the generative network, which could otherwise mistake noise
for fine-grained texture. To bridge the significant domain gap
between Sentinel-1, C-band and COSMO-SkyMed, X-band,
then employ a dedicated domain adaptation module that uses
a feature-level transformation technique [e.g., a CycleGAN-
based approach] to translate the echo characteristics of the
input imagery to better resemble the target domain. Finally, the
fully preprocessed, full-scene images are automatically tiled
into smaller patches and augmented with random flipping and
rotation to generate a large-scale, robust training dataset. The
entire pipeline is efficiently implemented using MATLAB.

B. Deep Learning Model

At the core of our framework is a conditional Generative
Adversarial Network (CGAN) specifically designed for SAR
super-resolution, inspired by the Pix2pixHD architecture. The
Generator network follows a multi-scale, coarse-to-fine strat-
egy. A global generator branch first processes downsampled

inputs to learn large-scale context and bridge the domain gap
between C-band and X-band data, while a local enhancer
branch refines fine-grained details at the target resolution.
This dual-path design, equipped with skip connections and
instance normalization, ensures both contextual coherence and
the preservation of subtle local textures. To further address
cross-sensor discrepancies at the feature level, we integrate an
early feature alignment layer, implemented as a set of residual
blocks, at the beginning of the generator. In parallel, a multi-
scale Discriminator network evaluates the generated imagery.
Following the PatchGAN paradigm, it assesses the realism
of overlapping local patches rather than the entire image.
Critically, to make the discriminator SAR-aware, we augment
its input with additional channels representing speckle statis-
tics specifically, local mean and variance maps, enabling it
to enforce consistency in SAR-specific texture. The entire
network is trained end-to-end with a composite loss function,
defined as a weighted sum of an adversarial loss, a pixel-wise
L1 reconstruction loss, a VGG-based perceptual loss, and a
Structural Similarity Index (SSIM) loss. This multi-component
loss guides the generator to produce high-fidelity, radiometri-
cally consistent outputs that are both visually plausible and
quantitatively accurate.

C. Water Edge Detection

To validate the practical utility of our super-resolved im-
agery, we implemented a deterministic image processing
pipeline for automated water body segmentation. This ap-
proach deliberately avoids a secondary deep learning model to
transparently demonstrate the quality enhancement provided
by our super-resolution framework itself, showing that even
classic, interpretable methods can achieve high accuracy on the
enhanced data. The pipeline begins with contrast enhancement
via histogram equalization to improve feature visibility. It
then applies Otsu’s global thresholding with binary inversion
to segment the image, operating on the common assumption
that calm water bodies exhibit low backscatter and appear as
dark regions. The resulting binary masks are refined using
morphological opening and closing operations to remove noise
artifacts and fill internal gaps, creating contiguous water
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regions. From these clean masks, contours are extracted and
filtered based on an area threshold to discard insignificant
fragments, identifying the primary water body boundaries. To
quantitatively assess performance, we compute the Intersection
over Union (IoU) between the mask predicted from our super-
resolved output and a reference mask generated from the
ground-truth high-resolution imagery. For qualitative analysis,
a multi-panel visualization is generated, displaying the input
image, the final binary mask, and the extracted contour over-
laid on the original image, alongside the calculated IoU score.

D. Indexes

In evaluating the proposed cross-band SR framework, we
employ a triplet of quality indices—PSNR, SSIM, and, DISTS
[8]. Structural Similarity Index (SSIM) offers a window-based
assessment of luminance, contrast, and gradient consistency.
This enables us to verify that large-scale geometric relation-
ships—such as building footprints, transportation grids, and
shoreline edges—remain intact even when speckle noise or
minor misregistrations are present. Mathematically, it can be
expressed as

SSH\/[(Z',y) = [l(x7y)a] ’ [c(x,y)ﬁ] : [s(xvy)’y] (D

where [, ¢, and s represent the luminance, contrast, and
structure terms computed over local windows, = and y denote
the image patches under comparison, and the exponents «, 3,
and y weight the relative importance of each component.

Peak-Signal-to-Noise Ratio (PSNR), a logarithmic measure
that compares the peak possible signal power with the power
of distorting noise. Because PSNR is derived directly from the
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Comparison of water body detection between original and generated images.

mean-squared error, it provides a straightforward, if somewhat
coarse, indication of reconstruction fidelity. It is computed as

II%]E),X 1 N 7 2
PSNR = 101log; (MSE> . MSE= ;(y —9i)".

2

where [, is the peak possible back-scatter intensity after
normalization, typically 1, IV is the number of pixels, y; is the
reference COSMO-SkyMed value, and ; is the corresponding
super-resolved prediction. A smaller MSE—and therefore a
larger PSNR—indicates closer numerical agreement.

Deep Image Structure and Texture Similarity (DISTS)
is adopted as the primary perceptual metric because it
correlates with human judgements far better than tradi-
tional, hand-crafted indices. Built on the feature space of a
pre-trained VGG-16 network, DISTS quantifies how closely a
super-resolved (SR) patch ¢ matches its reference y in both
structural alignment and textural richness. Formally, the score
is defined as

DISTS(y. ) =1— Y we [Se(y. 9) + To(y,9)], (8
¢

__2(¢e(y), ¢e(9))
Iee()I3 + ll@e(@)3”
o 200(y) oe(®)
Te(y,9) = 5~ 5
o7 (y) + o7 ()
Sy represents the structure similarity at layer ¢, while T}
measures texture similarity by matching the channel-wise

Se(y, 9) 9

(10)
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variances of the paired feature maps. Here, ¢y(-) denotes
the VGG activation extracted at layer ¢, and oy(-) is the
corresponding standard deviation, capturing texture energy.
And w, are non-negative weights obtained from large-scale
human-preference studies.

III. EXPERMINENT RESULTS

TABLE I
COMPARING INDEXES

Index SSIM PSNR | DISTS
CGAN 0.5720 | 18.50 | 0.0941
CycleGAN | 0.5942 | 20.14 | 0.0756
Pix2pixHD | 0.6245 | 21.62 | 0.0642

Our proposed super-resolution framework was compre-
hensively evaluated through both quantitative metrics and a
practical application, with the results summarized in Table 1
and Figure 2. In direct comparison with widely used GAN
baselines, our model demonstrates superior performance in
image reconstruction. As shown in Table 1, it achieves the
highest scores in traditional metrics like SSIM and PSNR, and
more importantly, the best score in the perceptually-aligned
DISTS metric. This indicates that our generated images are
not only quantitatively accurate but also visually more realistic
in texture and structure than those from competing methods.
This enhanced image fidelity directly translates to improved
performance in the downstream task of water body segmen-
tation. Qualitatively, the super-resolved images in Figure 2
exhibit markedly sharper and more well-defined water bound-
aries compared to the original Sentinel-1 inputs. This visual
improvement is validated quantitatively, with the extracted
water masks achieving high IoU scores ranging from 0.73 to
0.78. Ultimately, these combined results empirically validate
that our framework effectively enhances low-resolution SAR
data, providing tangible and high-value outputs for subsequent
geospatial analysis tasks.

IV. CONCLUSION

This study introduced a deep learning-based super-
resolution framework that effectively transforms widely avail-
able, low-resolution SAR imagery into high-resolution out-
puts, addressing the high acquisition costs and technical
challenges associated with fine-resolution data. Our model,
built upon a SAR-enhanced Pix2pixHD architecture, not only
demonstrates superior quantitative performance over baseline
methods across SSIM, PSNR, and DISTS metrics but also
generates visibly superior outputs with sharper details and
more realistic textures. The practical utility of this high-fidelity
reconstruction was validated through water body detection
experiments, where our method achieved Intersection over
Union (IoU) scores exceeding 70%, confirming its ability to
preserve structurally critical features for geospatial analysis.

Future work will focus on two key directions: (1) enhancing
fine-detail reconstruction and robustness by exploring more
advanced generative architectures and loss functions, and (2)
improving model generalizability by curating a larger, more

heterogeneous training dataset covering diverse geographic
conditions. Furthermore, we plan to adapt and validate our
framework for more demanding applications, such as post-
disaster infrastructure monitoring and change detection. In
conclusion, this work establishes deep learning-based super-
resolution as a robust and cost-effective force multiplier,
transforming low-resolution SAR data into actionable, high-
fidelity geospatial intelligence and paving the way for a new
era of accessible Earth observation.
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