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Abstract—In 6G networks, providing ultra-space, ultra-
connectivity, and ultra-precision services is a key objective,
driving active research and standardization efforts. Among these,
non-terrestrial networks (NTNs), particularly those using low
Earth orbit (LEO) satellites, have gained significant attention.
However, the high mobility of satellites and the harsh space
environment pose challenges to seamless service for terrestrial
user equipment (UE), especially mobile UE (MUE). This paper
proposes a reinforcement learning-based handover optimization
method for multi-layer satellite networks. The scheme utilizes long
short-term memory (LSTM) networks to predict the time-series
mobility of satellites and MUEs, and applies a multi-agent deep
Q-network (MADQN) to optimize handover decisions. Simulation
results show that the proposed method improves the quality of
service (QoS) for MUEs and enhances overall system throughput.

Index Terms—satellite communication, handover, multi-layer
satellite scenario, long-short term memory prediction, multi-
agent deep reinforcement learning.

I. INTRODUCTION

In next-generation 6G networks, extensive efforts are un-
derway to establish non-terrestrial networks (NTNs) for ultra-
space communication coverage. In particular, low Earth orbit
(LEO) satellite communications are regarded as a key NTN
platform, with active standardization in the 3rd generation
partnership project (3GPP) [1], [2]. However, the high mobility
of satellites poses challenges to seamless service for terrestrial
user equipment (UE), especially mobile UE (MUE), where
handover (HO) decisions must account for both satellite and
terminal mobility [3], [4].

This paper proposes CLM-HO, a handover optimization
scheme for a multi-layer satellite network (GLMLN) with
coexisting GEO and LEO satellites. The scheme employs a
convolutional neural network (CNN) to analyze satellite and
MUE mobility patterns, followed by a long short-term memory
(LSTM) network to predict MUE mobility [5]. A multi-agent
deep Q-network (MADQN) is then used to optimize handover
(HO) decisions, ensuring MUE quality of service (QoS).
Simulation results show that CLM-HO significantly improves
key performance indicators (KPIs) compared to conventional
MADQN-based methods [6].
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Fig. 1: GEO-LEO Multi-layer satellite networks.

II. SystEM MoODEL

In this study, we propose a mobility prediction and rein-
forcement learning-based handover optimization scheme for
a GLMLN, as illustrated in Fig. 1. The LEO satellite set as
L={l|l=1,2,...,N;} and the GEO satellite set is denoted as
G={g|g=1,2,...,N;}. The MUEs are traveling at altitude
h, and velocity v,, with the set of all MUEs expressed as
M={ulu=1,2,...,N,}.

The proposed CLM-HO scheme consists of two main proce-
dures: 1) MUE mobility prediction and data generation using
CNN-LSTM and 2) handover optimization using MADQON
based on the predicted data.In the first stage, the time-series
orbital data of satellites are utilized to extract features and
predict MUE mobility through a long short-term memory
(LSTM) network, which is well-suited for sequential data
analysis. To address the limitations of LSTM in modeling
long sequences, a convolutional neural network (CNN) is
incorporated to capture spatial relationships within the input
data and prevent overfitting.

The predicted mobility data from the CNN-LSTM model
are then incorporated as the state variable, s;‘,d(t), in the
second stage, handover optimization using CLM-HO. The rein-
forcement learning (RL) agent, representing the MUE, selects
actions ay,(r) based on s7,(t) to maximize the cumulative
reward r; 4(t). This approach enables optimal handover de-
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TABLE I: Simulation parameters.

Value

Ka-band (20 GHz)
35,786 km, 600 km

Definition ‘

Operating frequency (DL)
Satellite altitude(GEO, LEO)

Ng,Ni,N, 1,20,4
Batch size 256

Learning rate 0.0001
Replay buffer 50,000

Reward
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Fig. 2: GLMLN simulation environments and performance.

cisions, improving both service continuity and overall system
throughput. The RL process follows a Markov decision process
(MDP) defined by the state s7,(¢), action a},(¢), and reward
ryq(t), as detailed below:

o s04() = {Su(1),Sa(t),My(r)}: The observation space
available to the MUE agent in the GLMLN consists of
three components: serving satellite information, S,(r);
candidate satellite information, S,(¢); and current MUE
information, M,,(?).

o ap,(t) = {a"(t),a"(t)}: The MUE agent determines its
action based on the current state s‘;d(t), where, upon
satisfying the A3 HO triggering condition, it selects
either to maintain the connection with the current serving
satellite, a!'(t), or to perform a handover to a candidate
satellite, a’'(t) [7]..

o rpa(t) = 05, (t) + ney, (1) — C: To ensure the QoS of
MUEs, the reward function r,(r) is formulated based
on the relationship between the datarate, a);jd(t), and
the time of stay, (pl'jd(t). In addition, a HO cost, C,
is introduced to penalize frequent handovers, thereby
encouraging handover decisions at appropriate times.

III. PERFORMANCE EVALUATION

For the performance evaluation of the proposed CLM-HO
scheme in the GLMLN, a simulation scenario with coexisting
GEO and LEO satellites was designed, as depicted in Fig. 2(a).
Each satellite is configured to generate 19 beams, and all
channel models and parameters are adopted from the 3GPP
standard specifications [1], [2]. Simulations were executed on
a system equipped with an AMD Ryzen 7900X CPU and an
NVIDIA GeForce RTX 4070 Super GPU.

The performance of the reinforcement learning model is
evaluated based on reward convergence, as shown in Fig.2(b).
The proposed CLM-HO scheme achieves faster convergence,
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Fig. 3: GLCN simulation environments.

starting around 200 episodes, and demonstrates improved re-
ward performance compared to the baseline MADQN method,
which does not incorporate mobility prediction data. Addi-
tionally, KPIs including reference signal strength (RSSI) and
signal-to-interference-plus-noise ratio (SINR), are analyzed, as
illustrated in Fig.2. As shown in Fig.3(a), the proposed CLM-
HO achieves superior KPI performance compared to MADQN,
with further improvements observed in SINR, as depicted in
Fig.3(b). These results confirm that incorporating mobility
prediction data into the CLM-HO framework enhances KPI
performance relative to conventional reinforcement learning
methods.

IV. ConNcLusioN

This paper proposed CLM-HO, a handover optimization
scheme based on reinforcement learning incorporating mo-
bility prediction data. The proposed method demonstrated
improvements across all KPIs compared to conventional re-
inforcement learning approaches. As future work, we plan to
extend this study by integrating reinforcement learning for
human feedback (RLHF) to optimize parameters and weighting
factors, enabling handover strategies that better accommodate
diverse UE.
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