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Abstract—This paper addresses the problem of beam-hopping
pattern design (BHPD) in low Earth orbit (LEO) satellite
communication systems, with the objective of maximizing energy
efficiency (EE) while satisfying the traffic demands of ground
users. Specifically, the focus is placed on the joint optimization
of BHPD and transmit power allocation, a task that is inherently
challenging due to the mixed-integer nonlinear programming
structure of the problem and the computational constraints
typically encountered in LEQ satellite systems. Conventional
heuristic algorithms, such as matching-based approaches, have
been extensively explored to tackle these issues. However, their
performance remains suboptimal and is accompanied by signifi-
cant computational overhead. To overcome these limitations, this
work proposes a deep Q-network-based method for optimizing
BHPD. Simulation results demonstrate that the proposed ap-
proach substantially improves both EE and outage performance
when compared to existing methods.

Index Terms—LEO satellite communications, beam-hopping
pattern, deep learning

I. INTRODUCTION

With the rapid advancement of communication technolo-
gies, user expectations for high-quality, ubiquitous commu-
nication services have significantly increased. Despite con-
tinuous improvements in terrestrial communication networks,
coverage gaps persist in remote and challenging environments,
thereby positioning satellite communication systems as an
essential complementary infrastructure [1]. Among various
satellite architectures, low Earth orbit (LEO) satellites have
garnered substantial attention due to their inherent advantages,
such as reduced round-trip latency and lower signal attenuation
compared to geostationary orbit satellites [2]. In this context,
beam-hopping (BH) has emerged as a key enabling technology
for LEO satellite communication systems, attracting consider-
able interest from both academia and industry owing to its
adaptability and implementation efficiency [3]. BH enhances
resource utilization by activating a selected subset of beams
in each time slot based on a predefined illumination pattern,
which is periodically repeated across BH time windows. Fur-
thermore, to alleviate inter-beam interference resulting from
simultaneous beam activations, various resource allocation
strategies have been developed [4].

In order to effectively mitigate inter-beam interference in
LEO satellite systems, the joint optimization of BH pat-
tern design (BHPD) and transmit power allocation has been
extensively studied [5], [6]. Furthermore, given the limited
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onboard energy resources and the growing demand for high-
capacity communication, energy efficiency (EE) maximiza-
tion, while simultaneously meeting the traffic requirements
of ground users, has emerged as a critical design objective
in LEO resource management frameworks [7], [8]. However,
the joint optimization of BHPD and transmit power allocation
constitutes a mixed-integer nonlinear programming (MINLP)
problem, which is inherently difficult to solve optimally due to
its combinatorial and non-convex nature. To address this chal-
lenge, existing studies typically adopt either decomposition-
based methods [7] or direct joint optimization approaches
[8]. The former often relies on problem relaxations and
approximations, which may compromise optimality, while the
latter, although capable of achieving globally optimal solutions
in theory, faces significant scalability issues owing to its
exponentially expanding solution space.

To tackle the aforementioned challenge, the authors in [9]
introduce a decomposition method that splits the original
MINLP problem into two tractable subproblems: an inte-
ger programming component and a nonlinear programming
component. Notably, this decomposition does not involve
any form of relaxation or approximation, thereby preserving
full equivalence with the original problem. Nonetheless, even
after decomposition, solving the BHPD subproblem remains
computationally intractable, particularly in large-scale LEO
satellite networks where the solution space is substantially
large. To tackle this issue, various studies have employed
matching algorithms for BHPD optimization in LEO systems
[10]. However, conventional matching approaches, which typ-
ically rely on stochastic or random reassignment of candidate
matches, often struggle to guarantee optimality. To overcome
these limitations, a greedy search-based matching (GSM)
algorithm has been introduced in [11]. By iteratively selecting
matchings that yield the most favorable improvement in the
objective function, the GSM method demonstrates improved
convergence properties and enhanced performance relative to
traditional matching techniques.

Although the GSM algorithm demonstrates improved per-
formance over traditional matching methods, it still faces
challenges in achieving optimal solutions due to its inherently
greedy and iterative nature. Also, the iterative search process
imposes a high computational burden, which limits its prac-
ticality in large-scale scenarios. To address the computational

ICTC 2025



complexity associated with conventional heuristic and itera-
tive approaches, deep neural network (DNN)-based resource
allocation frameworks have garnered increasing attention, as
in [12]. In particular, deep Q-network (DQN)-based strategies,
as explored in [8], [13], have shown promise for solving the
integer programming component, such as the BHPD opti-
mization problem. Compared to GSM-based approaches, DQN
techniques have the potential to overcome local optima by
maximizing long-term cumulative rewards. However, due to
the extensive action space associated with BHPD optimization,
multi-agent approaches have been explored, as in [8]. Never-
theless, multi-agent DQN frameworks continue to encounter
challenges related to their distributed optimization method and
often exhibit suboptimal convergence behavior.

Motivated by these insights, this paper proposes a DQN-
based BHPD optimization algorithm for LEO satellite com-
munication systems, with the objective of maximizing EE
while ensuring that ground user traffic demands are satisfied.
Unlike the existing DQN method [8], the proposed centralized
approach sequentially optimizes each BHPD index to reduce
the action space and mitigate the complexity associated with
multi-agent frameworks. Extensive simulation results demon-
strate that the proposed scheme significantly outperforms
conventional methods in terms of EE and outage performance,
underscoring its potential as a viable and efficient solution for
next-generation LEO satellite communication networks.

II. SYSTEM MODEL

We consider a downlink LEO satellite communication sys-
tem in which a satellite is equipped with My, Earth-fixed
beams. Among these, the satellite can simultaneously activate
Mt spot beams to illuminate M, distinct ground positions,
as illustrated in Fig. 1. Let G = {1,2,...,G} denote the
set of beam groups and J = {1,2,...,My;,} denote the
set of fixed beam indices. The total number of groups G is
given by G = [My;;/Mac|, where each group corresponds
to a unique configuration of M,.; active beams. We define
zg; € {0,1} as the BHPD indicator variable, subject to the
constraints deG Zg; = 1 and Zjeﬂ Zg; = Myet, ensuring
that each beam is assigned to exactly one group and each
group comprises exactly M,.; active beams.

Furthermore, each beam serves K users, who are allocated
orthogonal channels via frequency division multiple access
(FDMA), with the total system bandwidth B equally parti-
tioned across the users. All beams are assumed to have an
identical coverage radius, which is determined by the 3 dB
beam-width angle, denoted as 034p. Let Ty represent the
number of time slots allocated to group g for the operation
of its M,.; active beams, where g € G. The total time slot
allocation must satisfy the constraint 9€G Ty < Tpae» Where
Tinae denotes the total number of time slots within a BH
window. We assume that the duration of the BH window is
fixed and that all beam hopping operations are completed
within this interval. Additionally, for analytical tractability,
we consider uniform time slot allocation across groups, i.e.,
Ty = Tinas/G for all g € G.
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Fig. 1. An example of LEO satellite system, where My;, = 16, Mact = 4,
and G = 4.

We define the channel gain experienced by user &, located
within the coverage area of beam j € J, from a neighboring
interfering beam 7 € J\{j}, as follows [14]:
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where Gy denotes the antenna gain of the ground user,
and Grpo = ((70m/0345)% represents the peak antenna
gain of the LEO satellite, where ( is the antenna efficiency
parameter, and 0345 is the 3 dB beam-width angle [15]. Upon
determination of the BHPD index, let M, denote the set of
M, active beams assigned to group g, and let K, ,,, represent
the set of users served by beam m € M,. The channel gain
between user k and beam m in group g € G is denoted
by hgm.k- The overall channel loss Lj experienced by user
k includes both free-space path loss and shadowing effects
at the carrier frequency f., where the shadowing component
is modeled as a log-normal random variable with standard
deviation 0. Let 0, ., ;. denote the angular separation between
the central axis of beam m € M and user k € K ,,. The
beam pattern gain for user k£ from beam m in group g is
denoted by 3, .1 and is defined as [16]:

J1(Ng.m 36.J3(1s.mu) \
/Bgme{: _ ( 1( ]g, ,k) + 33(77 31, )> , (2)
2ng7m7k s nu

where 1 . = 2.07123 sin(6y,m 1)/ sin(fsqp), and J; () and
J3(+) are the Bessel functions of the first kind of order one and
three, respectively. Throughout the BH window, the channel
gains are assumed to remain quasi-static, i.e., constant over
the scheduling duration.

The achievable capacity for user k is expressed as

hg,m kDg,m.k

9~ 1o 1+ Sl i ,

Tnae K 82 ( EieMg\{m} hg,ikDg,ik + 1>
3)
where pgy ., 1 denotes the transmit power assigned to user k,
and ﬁg,m’k = hgm/(0nB/K) represents the normalized
channel gain, interpreted as the effective transmit signal-to-
noise ratio (SNR), with o,, being the noise power spectral
density. Subsequently, the EE of the system is defined as [17]

deG deMg Zkng,m Lgm.k )
EE — T )
deG - deMg Zkng,m Pg,m.ke + Fe

Fg,m,k =
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where P, denotes the constant circuit power consumption of
the satellite payload.

Accordingly, in LEO satellite communication systems, we
reformulate the resource allocation problem as a joint opti-
mization of BHPD and transmit power, as follows:

Po max gg, (5a)
S.t.ZIgJ =1,Vjel, (5b)
g€G
ngvj = Myet, Vg € G, (5¢)
J€J
T
Z T ¢ Z Z Pg,m,k < Pma;ca (Sd)
g€G ~ MM geMy k€Kg,m

Lymik > Dgmi, Yk € Kgm,Vm € My, Vg € G. (5e)

Here, constraints (5b) and (5c) enforce the structure of the
BHPD index, ensuring that each beam is allocated to one
and only one group, and each group contains a fixed number
of active beams. Constraint (5d) imposes an upper bound
on the total transmit power, such that it does not exceed
the satellite’s maximum power budget P..x. Furthermore,
constraint (5e) guarantees that the data rate of each user meets
the corresponding traffic demand requirement Dy ,, 1.

III. PROPOSED BHPD OPTIMIZATION FOR LEO
SATELLITE SYSTEMS

In this section, we introduce the proposed DQN-based
BHPD optimization scheme to address the problem defined
in (5). Prior to presenting the detailed algorithmic framework,
we first decompose the original joint optimization problem
into two tractable subproblems: an integer programming sub-
problem corresponding to BHPD optimization and a nonlinear
programming subproblem corresponding to power allocation.
These subproblems are equivalent in structure to the original
formulation.

Let the total transmission power associated with the
EE maximization problem P, be defined as P,y =
D geG % > meMg 2_kek, ,, Pg.m,k- For any fixed value of
P,.t, the original problem can be equivalently reformulated as
follows:

deG deMg Ekng,m Lg.m.k

P1 : max oD , (6a)
tot c
SULY xg; =1,V €], (6b)
g9€G
ng’j = Mget, Vg € G, (6¢)
Jjel
T
Do > D Pomk =P (6d)
g€G ~ M geMy k€K, m

Lymik > Dgmi, Yk € Kgm,Vm € My, Vg € G. (6e)

Since the denominator P;,;+ P, in the EE expression becomes
constant under fixed P, the objective function can be

equivalently represented as 37 ¢ > cm, Dorek, ,, Lgimk-

Moreover, since Y Dy m.k 1s constant,

g€G ZmeMg k€Kg m

the objective function can be equivalently expressed as
deG deMg Zkng’m(Fgm,k — Dy k). This formulation
reveals that the structure of the objective function aligns
with the aggregate form of the traffic demand constraints in
(6e), thereby providing insights into the tractability of the
decomposed optimization problem.

By reformulating the constraint in (6e), we derive the
following expression

Fg,m,k > Dg,m,k

— hg,myk
= A Pgm,k —
g,m,k

Z Bg,i,kpg,i,k Z ]-7
i€Mg\{m}

where Ay, 1 = 2K PomkTmae/(BTy) 1 Letus define 2, 1, as
an My X My e matrix whose diagonal elements are given by
hg,m. i/ Ng.m, and off-diagonal elements are —hyg ; ;. Using
this definition, the above inequality can be compactly rewritten
as

—

:g»kpg,k Z (=

= Pgymk = Pygmiier ¥k € Ky m, Vm € My, Vg € G,
where p, . = [Pg.m.k]1xM,,, is the transmit power vector
associated with user k in group g, and e = [1]1xay,_, is the all-
one vector. Accordingly, the minimum transmit power vector
Py required to satisfy the traffic demand Dy, can be
obtained by solving the matrix equation E;ie, as previously
demonstrated in [11]. This can also be equivalently expressed
as

Ag.m i (ZieMg\{m} hg.i kP4 + 1)

hg,m,k

min

pg,m,k

(D

From the preceding analysis, it is evident that the summation
in the final constraint of problem P; structurally corresponds
to the objective function itself. Consequently, the original
problem can be equivalently reformulated as the following
optimization problem:

P i max Z Ty

gEG Tmaw

s.t.(6b) — (6e).

min
§ : E : Pgm.k — Pgm,k

meMy k€EKg m

By exploiting the second constraint, the objective function can
. T, ;
b? rewritten as .Ptot - dett; T D omeM, DokeK, m Dok
Since P,,; is considered a fixed constant, the
objective  function can be further simplified to
T, i .
- ZQEG T ZmEMg ZkEKg,m Py - Moreover, given
that the second and third constraints correspond to the
power allocation phase subsequent to BHPD, the original
problem can be decomposed accordingly. Thus, the BHPD
optimization subproblem can be expressed independently as

. T, min
7DBHPD :mlnz T g Z Z pg,m,k (83.)
9€G " MY meMy keKy m
sULY mg;=1,Vj€], (8b)
g€G
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ng,j = acts Vg €G. (SC)
Jjel
Correspondingly, the remaining power allocation subprob-
lem can be formulated as

Ppa :max gg (%a)

S.t. Z T:iz Z Z Dgm.k < Prox,

9€G gEMy k€Ky, m
Fg,m,k > Dg,m,k; Vk € ]Kg’m,Vm c Mg,Vg e G.
(%0)

(9b)

This decomposition confirms that the BHPD optimization
problem Ppppp is consistently derived from the original
problem Py for any given P;,;. Therefore, the optimal solution
to the BHPD component can be effectively obtained by solving
Perpp, obviating the need to address the joint optimization
problem Py directly.

A. Proposed DON-Based BHPD Optimization

The proposed BHPD optimization algorithm utilizes a
DQN-based approach to address the optimization problem
Pprpp. Within this framework, each episode ¢ corresponds
to a unique realization of the BH window, implying that a new
episode commences whenever the channel conditions undergo
variation, where the total number of episodes is denoted by
tmaz- Each episode comprises a fixed number of discrete
decision-making intervals, indexed by ¢, with a maximum of
tmaz Steps. In contrast to conventional multi-agent learning
schemes, the proposed method incrementally optimizes the
BHPD index at each time step. This sequential design aims
to mitigate the exponential growth of the BHPD index search
space, thereby improving computational tractability. The un-
derlying decision-making framework is modeled as a Markov
Decision Process (MDP), which is defined as follows:

o State: Within the DQN framework, the LEO satellite
continuously observes the system state at each time
step t. This state comprises multiple components: the
normalized transmit SNR, the ratio of the desired signal
to interference and the users’ traffic demand, and the
current BHPD allocation. Formally, the system state is
expressed as

s(t) = [¥, 11, Y], (10)

where W = log,o(1 + h;x),Vj € J,VI € J represents
the normalized channel gain. Moreover, IT = logy(1 +
hgmk/ D iem,\{m} Paik)/Dgm, VE € Ko m,¥m €
Mgy, Vg€ G and X =z, ;,Vj € J,Vg € G.

e Action: The action space for the BHPD optimization is
formally defined as follows:

a(t) € {{Aj’Aj}7®}7 (11)

where the notation {A;, A;} denotes a pairwise exchange
of the BHPD index between beam j € J and another
beam j € J \ {j}. The action @ represents a no-
operation (i.e., the current BHPD configuration remains

Algorithm 1: Training Mechanism for Proposed DQN-
Based BHPD Optimization

1 Initialize Q-network Q(®) and target network Q(@I).

2 Initialize the replay buffer, batch size O, epsilon greedy
parameter €, max time step tmaqz, discount factor v, and
target network update period Tpaz.

3 for e =1:1mas do

4 Initialize s(0) and €(0).

5 for t =1:tmas do

6 Select action a(t) based on e-greedy as

(1) = Random € {{A;, A}, @}, if ¢,
’ an = argmaxg(¢) @ (s(t),a(t); ®), if 1 —e
8 Conduct a(t) and obtain s(t + 1).
9 Calculate Q(¢) and ().
10 Store the sample (s(t), a(t),r(t), s(t + 1)) in the
replay buffer.
11 if replay buffer size > O then

12 Obtain O random samples in the replay buffer
and calculate L in (14).

Trainable parameters (®) are updated.

13

14 end

15 end

16 if mod (¢, tmaz) = 0 then

17 ‘ Target network is updated by (@l +— O)
18 end

19 end

unchanged). Consequently, the total size of the action
space in the proposed DQN-based framework is given
by Myiy Co + 1, where Myin Cy = Mfw'/((Mfm — 2)!2!)
denotes the number of distinct beam-pair combinations.

e Reward: To align with the objective of problem Prypp,
the reward structure is designed to reflect changes in the
cost function €2, which is defined as

Ty DQN
UED DECED Sl ST AL
geG MM geM, K€Ky, m
In calculating pggf\;, the transmit power is esti-

mated based on the expression in (7), assuming an
equal power allocation strategy given by pg .k
Praz/(MfizKTnaz). Accordingly, the reward at time
step t is determined by

r(t) € {£1,0}. (13)

where the reward is r(¢t) = 1 if Q(t) < Q(t — 1), which
indicates a decrease in the objective function. Conversely,
when Q(t) > Q(t—1), the reward is set to —1. If the cost
function is same, that is, Q(t) = Q(¢ — 1) (corresponding
to a(t) = @), the reward is assigned a value of 0.

To facilitate the training of the proposed model, the agent
concurrently updates the Q-network Q(®) and the target
network Q(@l), where © and ® represent the respective
sets of trainable parameters for each network. Both networks
receive the state vector defined in (10) as input and output the
corresponding action values for the defined action space. At
each discrete time step, the agent selects an action according
to the e-greedy strategy, which balances the trade-off between
exploration and exploitation. The chosen action transitions the
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TABLE I
SIMULATION PARAMETERS

System parameters Values
Number of active beams (Mgct) 4
Number of fixed beams (M ;) 16
Number of users (K) 2-6
Number of time slots (Ty,q2) 32
Maximum transmission power (Pmaz) 53 [dBm]
The 3 dB beam-width angle (0345) 3°
Total bandwidth (B) 10 [MHz]
Ground user antenna gain (ay g) 23 [dB]

Antenna efficiency (¢) 0.5

Carrier frequency (fc) 2 [GHz]
Standard deviation of shadowing (o) 4 [dB]
{10°, 20°, 30°, 40°, 50°,

Elevation angle 60°,70°,80°,90°}

Earth radius 6,371 [km]
Satellite altitude 600 [km]
Noise spectral density (op,) -174 [dBm/Hz]
Circuit power consumption (F.) 30 [dBm]
Average traffic demand 0.4-0.65 [Mbps]
Number of data instances 9,000
DQN parameters Values
Number of episodes (tmazx) 9,000
Number of time steps (tmax) 32
Number of hidden layers 2
Number of hidden nodes 512
Capacity of replay buffer 1,000
Batch size (O) 32
Discount factor () 0.2
Target network update period (7¢qr) 10
Learning rate 0.001

system to a new state s(¢ + 1), from which the updated cost
function () and the corresponding reward r(¢) are derived.
The resulting tuple (s(t),a(t),r(t),s(t + 1)) is stored in a
replay buffer for experience replay.

Let O denote the mini-batch size used during training. Once
the number of samples in the replay buffer exceeds O, the Q-
network is updated by minimizing a loss function based on
the log-cosh metric, as follows:

O
L= % 3" In (cosh(Q (5(0), al(0); ©) — Z(0),  (14)

where Z(0), the target Q-value, which is defined as

Z(0) =7(0) + 1maxQ(s(0),a(0); @) (15)
Here, 0 represents the subsequent time step following o, and ~y
denotes the discount factor that modulates the importance of
future rewards. To enhance training stability, the parameters of
the target network are periodically updated. Specifically, if the
condition mod (¢, T44,) = 0 is satisfied, the target network’s
weights are softly synchronized with those of the main Q-
network. Here, 7., indicates the update interval of the target
network. The complete training protocol for the proposed
DQN-based BHPD optimization algorithm is summarized in
Alg. 1.

IV. SIMULATION RESULTS

This section provides a thorough performance evaluation
of the proposed scheme in terms of EE, outage rate, and
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Fig. 2. EE and outage rate performance under varying average traffic demand,
with a fixed total user count of 48

execution time. The simulation parameters, adopted from the
configurations in [11], [14], [16], are summarized in Table I.
Each simulation instance reflects a distinct user deployment
scenario. A total of 1000 independent data instances are con-
sidered, where each instance includes 9 variations in elevation
angle ranging from 10° to 90°. It is important to note that
the shadowing effects are also varied in accordance with
the elevation angle. Consequently, the overall performance
evaluation encompasses 1000 x 9 episodes. A separate, non-
overlapping dataset comprising another 1000 x 9 episodes
is utilized for training the proposed model. For the DQN
training, the exploration rate € is initialized to 1, and decays
multiplicatively by a factor of 0.995 until reaching a minimum
value of 0.01. The DNN employed within the DQN framework
consists of two hidden layers, each comprising 512 neurons,
with Sigmoid functions used as activation mechanisms.

For benchmarking purposes, the performance of the pro-
posed algorithm is compared against the following baseline
schemes:

1) Fixed BH: This baseline utilizes a static BHPD without
dynamic adaptation. As a result, it lacks the ability to
effectively manage inter-beam interference or optimize
EE and outage probability.

2) GSM BH: This approach is based on the GSM algorithm
proposed in [11]. While it improves over fixed methods,
it remains suboptimal due to its greedy iterative nature
and incurs high computational complexity.

3) Matching BH: This method employs a matching algo-
rithm for BHPD optimization as introduced in [16].
However, because it relies on random pairwise ex-
changes for beam matching, it cannot guarantee con-
vergence to the global optimum.

4) Proposed BH: This refers to the DQN-based BHPD
optimization approach introduced in Section III-A. All
the aforementioned schemes utilize the optimal algo-
rithm from [18] to solve the nonlinear power allocation
problem Pp 4 optimally.

Energy efficiency [Mbps/W]

Fig. 2 illustrates the impact of varying average traffic
demand on EE and outage rate under a fixed total user count of
48. An outage event is defined as a scenario wherein any user
fails to meet its assigned traffic requirement. As shown, the
fixed BH scheme exhibits the poorest performance in terms of
both EE and outage rate, primarily due to its static BHPD.
The matching BH approach shows moderate improvement
over the fixed BH scheme; however, its performance remains

1988



——Fixed BH

~<}-GSMBH
Matching BH
Proposed BH

Energy efficiency [Mbps/W]

A Fixed BH

~<}-GsmBH
Matching BH
Proposed BH

103
32 48 64 80 % 32 48 64 80 %
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with a fixed average traffic demand of 0.6 Mbps.

constrained by the inherent limitations of its random swapping
mechanism. The GSM BH method outperforms both fixed and
matching BH schemes, yet its greedy convergence behavior
imposes a ceiling on achievable performance. In contrast,
the proposed DQN-based scheme is specifically designed to
maximize cumulative rewards, thereby effectively overcoming
the limitations of the GSM method and achieving enhanced
EE and reduced outage probability.

Fig. 3 presents the relationship between the total number of
users, My;, K, and the resulting EE and outage rate, with the
average traffic demand fixed at 0.6 Mbps. Across all user count
regions, the proposed BH scheme consistently demonstrates
superior performance in both metrics. Additionally, Fig. 4
evaluates the computational time required by each scheme as
the number of users increases. Notably, both the matching
and GSM algorithms exhibit substantial execution time due to
their iterative BHPD optimization processes. In contrast, the
proposed DQN-based BH scheme incurs significantly lower
computational complexity, owing to its ability to perform
BHPD optimization through a pre-trained DNN.

V. CONCLUSIONS

In this paper, we have proposed a DQN-driven BHPD
optimization framework that aims to enhance the EE of LEO
satellite communication systems while guaranteeing that the
traffic demands of ground users are met. Given the diffi-
culty of achieving optimal solutions for the considered EE
maximization problem, we have first decomposed the original
MINLP formulation into two tractable subproblems: BHPD
and transmit power optimizations. To further address the
computational burden and subpar EE performance of conven-
tional techniques, the DQN-based optimization method was
introduced for the BHPD. Numerical evaluations confirmed
that the proposed algorithm achieves significant gains in EE
while simultaneously reducing the outage probability. In the
future, we plan to comprehensively address practical issues
in LEO satellites, such as the Doffler effect and outdated
channels.
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