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Abstract— This study proposes a methodology to enhance
the classification performance of traditional machine learning
models for lifelog data analysis by leveraging Large Language
Models (LLMs) for missing value imputation. The reasoning
capabilities of LLMs are used throughout the imputation
process, and the resulting features are fed into an ensemble-
based predictor. In our evaluation, the proposed approach
improved classification accuracy on lifelog data compared with
conventional methods.
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1. INTRODUCTION

With the rapid proliferation of smart devices and the
increasing use of wearable technology, lifelog data—
capturing diverse aspects of users’ daily lives—is being
generated at an unprecedented scale. Such data has become
an essential resource in domains including personalized
services, healthcare, and behavioral analysis. It provides
objective indicators of quality of life by encompassing
variables such as physical activity, heart rate, and sleep
patterns. In particular, variations in physiological signals
during daily activities and sleep offer valuable insights into
sleep quality, emotional states, and stress levels.

Despite its potential, lifelog data often suffers from
missing values and noise due to the inherent limitations of
real-world data collection. Even with continuous monitoring
via smartphones and smartwatches, missing or anomalous
entries frequently occur. This problem is exacerbated by
inconsistent device usage—for instance, users may not wear
smartwatches during sleep—resulting in incomplete or
fragmented sleep-related records. Such issues limit the
reliability of downstream analyses and predictive modeling.

To address these challenges, this study proposes an
imputation framework that leverages the inference
capabilities of LLMs. By imputing missing values in sensor-
derived lifelog data, we aim to enhance the informational
quality of input features and thereby improve the accuracy of
sleep quality prediction. Unlike conventional statistical
methods that rely on numerical similarity or distance
measures, LLMs can incorporate contextual knowledge,
temporal dependencies, and domain-specific sleep rules. This
enables them to generate plausible estimates for variables

such as bedtime and wake time by considering
weekday/weekend patterns, seasonal variations, and
individual behavioral routines.

Through this approach, logically consistent and

statistically valid sequences can be reconstructed, effectively
mitigating the adverse effects of missingness. As a result, the
usable sample size increases and predictive models can
exploit a more complete dataset. Ultimately, this study
contributes a robust imputation strategy that enhances both
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the accuracy and generalizability of sleep quality

classification.
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Fig. 1. Overall architecture of the LLM-based imputation and prediction
model.

II. RELATED WORK

With the advancement of smart devices, research on
utilizing various types of sensor data collected from
individuals has become increasingly active. A study by
Ribeiro et al. (2022) published in JMIR mHealth and uHealth
provides a comprehensive review of "Lifelog" research,
which involves collecting multimodal sensor data—such as
images, audio, location, physical activity, and physiological
signals—via wearables and smartphones to analyze personal
experiences and behaviors. The paper highlights the use of
multimodal data and retrieval/classification techniques in
lifelog applications, including memory augmentation and
behavioral understanding, and emphasizes that vision-based
logs offer particularly rich information [1].

Meanwhile, the rapid advancement of LLMs and growing
interest in their capabilities have spurred a wide range of
research exploring their applications across various domains.
In a study by Ding et al. (2024) published on arXiv, the
authors propose a framework for addressing missing data in
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recommendation systems using LLMs. By leveraging LLMs
to predict and impute missing values, the framework
overcomes the limitations of traditional mean or regression-
based methods. The study demonstrates that LLM-based
imputation improves recommendation accuracy across
diverse classification and regression tasks, including
single/multi-class classification and score prediction,
outperforming conventional statistical techniques [”].

Research is also actively exploring the use of LLMs to
automate de-identification of medical clinical data. Singh et
al. (2025), in their study on arXiv, propose the RedactOR
framework, which performs fully automated de-identification
of multimodal Electronic Health Records (EHR), including
both structured and unstructured text, as well as clinical voice
data [3]. This study suggests that generative Al can be
effectively integrated into real-world healthcare data
pipelines.

In another study that proposed a framework for predicting
and detecting individuals' physical and psychological states
using lifelog data, the authors established a process that
includes lifelog data collection, feature extraction, labeling,
and model training. Based on this framework, they developed
models to detect sleep quality, personality traits, mood, and
depression. Experiments using real-world data confirmed that
daily activity logs have a meaningful correlation with
personal health conditions such as sleep and mood, and the
overall results were promising [4].

Recent studies apply LLMs directly to imputation for time-
series and tabular data. Jacobsen and Tropmann-Frick
demonstrate that, with parameter-efficient fine-tuning (e.g.,
LoRA), LLMs can achieve performance competitive with
dedicated deep-learning imputers (e.g., SAITS) on time-
series imputation tasks [5]. In addition, GATGPT integrates
an LLM with a spatiotemporal heterogeneous graph to jointly
address anomaly detection, imputation, and prediction, and
discusses the trade-offs between prompt-based and fine-
tuned approaches [0].

Extending this line of research, our study proposes an
LLM-based imputation framework tailored to the sleep
lifelog setting, where missing values in key variables such as
bedtime and wake time frequently arise due to device sparsity
and inconsistent usage. By integrating contextual
knowledge—including weekday/weekend patterns, seasonal
effects, and domain-specific sleep guidelines—LLMs
generate plausible and temporally consistent imputations that
go beyond conventional statistical methods. These enriched
features not only reconstruct logically coherent sleep
sequences but also enhance the predictive performance of
downstream ensemble classifiers, thereby offering a robust
methodology for sleep quality prediction.

[II. METHODOLOGY

A. Datasets

For this study, we utilized the competition-provided subset
of the 2024 ETRI Lifelog Dataset, which consisted of 450
training samples and 250 public test samples. This subset was
derived from the original dataset and distributed specifically
for the challenge task.

The original 2024 ETRI Lifelog Dataset was collected by
the Electronics and Telecommunications Research Institute

(ETRI) from 10 participants using smartphones,
smartwatches, sleep sensors, and self-reporting applications.
In total, this process yielded approximately 700 participant-
days of multimodal records, capturing both daily activities
and sleep behaviors. The data collection protocol followed
methodologies consistent with previous ETRI Lifelog studies
[7 9.

The dataset includes 12 sensor-derived variables from
smartphones and smartwatches (Table I), such as charging
status, activity recognition, ambient sound, Bluetooth/Wi-Fi
signals, GPS trajectories, illuminance, screen status, app
usage, heart rate, ambient light, and step count. These
multimodal features comprehensively represent both physical
activity patterns and environmental context in everyday life.

TABLE 1. LIFELOG DATA
Category Data Item Description
mACStatus Charging status
.. Activity classification via Google
mActivity Activity Recognition API
. Ambient sound labels and
mAmbience s
probabilities
mBle Nearby ' Bluetooth device
Smartphone- information
based Data mGps GPS coordinates
mLight Illuminance measured by
smartphone
mScreenStatus  Screen usage status
mUsageStats  App usage logs and usage time
mWifi Nearby Wl—Fl device
information
Smartwatch wHr Heart rate readings
;‘;‘Z‘;;Vlgacta‘ wLight Ambient light
wPedo Step data

In addition, six sleep-related health indicators were derived
from a combination of sleep sensor measurements and self-
reported surveys (Table I1). These indicators (Q1-Q3, S1-S3)
capture both subjective and objective aspects of sleep health,
fatigue, and stress. Each target was labeled on a daily per-
participant basis and discretized into either binary (0/1) or
ternary (0/1/2) levels, depending on the indicator. For
example, Q1 denotes self-reported overall sleep quality after
waking, while S1-S3 represent adherence to established
sleep guidelines for total sleep time (TST), sleep efficiency
(SE), and sleep onset latency (SOL), respectively.
Classification criteria were predefined according to clinical
and behavioral standards, and detailed guidelines are
documented in the dataset release [ 10].

TABLE IL SELF-REPORTED INDICATORS(TARGETS)
Indicators Description

Qi Overall sleep quality as perceived by a subject
immediately after waking up.

Q2 Physical fatigue of a subject just before sleep.

Q3 Stress level experienced by a subject just before
sleep.

S Adherence to sleep guidelines for total sleep
time (TST).

S Adherence to sleep guidelines for sleep
efficiency (SE).

$3 Adherence to sleep guidelines for sleep onset

latency (SOL, or SL).
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B. Missing Data Types

Sensor data with missing values can be broadly categorized
into three types. These scenarios represent different
challenges in modeling lifelog data, as temporal continuity
and contextual information are crucial for predicting sleep-
related outcomes.

1) The previous day's data (D-1) is available, but the
current day's input data (D-Day) is missing: In this case, the
model must generate predictions without essential
information required for accurate inference.

2) The previous day's data is missing, while the current
day's input data is available: This limits the model's ability
to reflect contextual patterns from prior data.

3)  Both the previous and current day's input data are
missing: In this case, the model cannot leverage learned
temporal patterns, which may significantly degrade
prediction performance.

C. Bedtime and Wake Time Inference

In this competition, only sensor data were provided, and
unlike prior challenges [!1], information on bedtime and
wake time was unavailable. Nevertheless, previous studies
have demonstrated that these variables—together with their
difference (i.e., sleep duration)—are critical indicators of
sleep quality and stress [ | 2]. To compensate for this absence,
a baseline model was first trained to evaluate feature
importance. Based on the results and the observed frequency
of missing values, mScreenStatus emerged as the most
influential feature and was therefore selected as the primary
source for inferring sleep-related variables.

Bedtime and wake time were derived from mScreenStatus
using the following procedure:

1) Time Window Filtering: Screen activity records were
restricted to the range 21:00-11:00, which typically
encompasses the main sleep period.

2) Noise Reduction: Isolated screen-on events within
screen-off intervals were removed, and short awake segments
(<2 minutes) surrounded by sleep blocks were reclassified as
sleep to reduce fragmentation

3) Sleep Block Detection: Continuous screen-off
intervals were detected, and the longest interval was
designated as the primary sleep episode.

4) Feature Calculation: The start of the longest block
was defined as bedtime (21:00-02:00), the end of the block
as wake time (03:00-11:00), and their difference as sleep
duration (excluded if <100 minutes).

Applying this rule-based procedure led to a substantial
number of missing values, largely due to the inherent sparsity
of sensor activity during sleep. In certain cases, entire days
contained only target labels without any corresponding logs,
underscoring a data quality challenge that degrades predictive
performance. To address this limitation, LLMs were
employed to impute missing bedtime and wake time entries
by leveraging contextual patterns, statistical tendencies, and
domain-specific knowledge. These imputed values were then
incorporated as features for downstream prediction tasks.
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D. LLM-Based Missing Value Imputation Process

The LLM-based missing value imputation procedure in this
study was designed as a structured pipeline. The first step
focused on selecting and configuring an appropriate model
for stable inference.

1)  Model Selection

All training and inference tasks were performed in a
Google Colab Pro+ environment equipped with an NVIDIA
A100 GPU to ensure sufficient computational capacity. For
the imputation process, the Qwen/Qwen3-8B model was
employed with bfloatl6 precision, and inference was
conducted using the vLLM library for efficient memory
management and fast decoding [ 3].

The experiment was conducted under a standardized
configuration to ensure consistency and reproducibility.
Specifically, the maximum token length was fixed at 37,000,
the temperature parameter was set to 0 in order to eliminate
sampling randomness, and the random seed was set to 42 to
guarantee reproducibility across runs.

2) Exploratory Data Analysis for Prompt Engineering

Exploratory analysis revealed several domain-specific
behavioral patterns, which were explicitly embedded into the
prompts:

e  Weekend effect: Later bedtimes and wake times on
Fridays and Saturdays.

e  Seasonal effect: Earlier wake times during July and
August.

e  Sleep compliance effect (S1 =2): Higher adherence
to total sleep time guidelines was associated with
delayed wake times.

These contextual insights were incorporated into the
prompt design to guide the model in producing realistic
imputations rather than relying on simple statistical averages.

3) Prompt Engineering for System Message

The system message provided global constraints and task
context to the LLM. It specified:

e  Task definition: Imputation of missing bedtime and
wake time for sleep health prediction.

e Time representation: Decimal-hour format (e.g.,
23.50 =23:30, 0.75 = 00:45)

e  Valid time ranges: Bedtime = 21.0-2.0, Wake time
= 3.0-11.0 (decimal hours).

e  Domain rules: Later wake times on weekends,
earlier wake times in summer months, adjustments
for S1 compliance.

e Data integrity: Preserve all observed values, fill
only missing fields, and avoid empty outputs.

4) Prompt Engineering for User Message

The user message contained task-specific instructions and
contextual information:



e Imputation sequence: (i) fill missing bedtime, (ii)
impute wake time conditional on bedtime.

e  Statistical references: Weekday- and month-
specific averages to ensure temporal consistency.

5) Missing Value Generation and Validation

The results of LLM-based missing value generation, as
illustrated in Figure 2, demonstrate the model’s ability to
infer bedtime with contextual precision using temporal
information and weekday/month-specific averages. For
instance, in the case of a missing value for July 10, 2024
(Wednesday), the LLM recognized that the date
corresponded to a weekday in July and referred to the average
bedtime for Wednesdays in July—approximately 23.3—to
fill in the missing data.

During this process, the model identified that the date was
not a weekend, thereby applying no weekend adjustment and
instead directly using the average value. It also ensured that
the generated value fell within the predefined valid bedtime
range (21.0 to 2.0, based on a 24-hour decimal format).

Unlike traditional approaches that mechanically insert
mean values, the LLM integrates contextual conditions
(weekday, month, weekend status) and statistical references
(average bedtime, time range constraints) to infer missing
values. Notably, the model correctly interprets circular time
logic, understanding that values beyond 24:00 (e.g., 1.5 =
1:30 AM) are still valid within the 21.0 to 2.0 range. This
contextual awareness and adaptive generation highlight the
distinct advantage of using LLMs over conventional

imputation methods.

Let's take the first missing bedtime entry: 2024-07-10, which is a
Wednesday in July. Looking at the statistics for July, the average bedtime
for Wednesday is 23.299999999999997. Since the user mentioned that
the average bedtime for Wednesday in July is around 23.3, I can use that
as a reference. However, I should also check if there are any other factors,
like if it's a weekend or a holiday, but since it's a weekday, I can use the
average.

Wait, but the user also mentioned that on weekends, people tend
to go to bed later. However, July 10th is a Wednesday, so it's a
weekday. Therefore, using the average bedtime for Wednesday in July
(23.3) makes sense. But I need to ensure that the value is within the 21.0
to 2.0 range. Wait, 23.3 is within 21.0 to 2.0? Wait, no. Wait, the range
for bedtime is 21.0 to 2.0, which is a circular range. So 21.0 to 2.0 would
mean times from 9 PM to 12 AM, but that doesn't make sense. Wait,
the user said that the average bedtime is in the range of 21.0~2.0 or
3.0~11.0 for wake time. Wait, maybe there's a misunderstanding here.
Let me recheck the instructions.

The user mentioned that the average bedtime is in the range of
21.0~2.0, which is a circular time range. So 21.0 is 9 PM, 2.0 is 2 AM.
So the bedtime is between 9 PM and 2 AM. Wait, that seems odd. But
according to the example given, 1.4776 is 1 hour 28 minutes, which is
1:28 AM. So the bedtime is in the range of 21.0 (9 PM) to 2.0 (2 AM),
which is a 3-hour window. That seems like a very short window for
bedtime. Wait, maybe there's a mistake here. Alternatively, perhaps the
range is 21.0 to 2.0, meaning that the bedtime is between 9 PM and 2
AM, but that's a 5-hour window. Wait, 21.0 is 9 PM, 2.0 is 2 AM, so the
range is from 9 PM to 2 AM, which is 5 hours. But the user also
mentioned that the average bedtime is in 21.0~2.0 or 3.0~11.0 for wake
time. Wait, maybe the bedtime is in 21.0~2.0 (9 PM to 2 AM) and wake
time is in 3.0~11.0 (3 AM to 11 AM). That seems possible.

Fig. 2. LLM inference log for bedtime and wake time imputation(abridged).

Building upon the final imputed values, this study
performed additional feature engineering to enhance the
predictive capability of the model. Prior research has

demonstrated that variables such as bedtime, wake time, and
total sleep duration are highly influential in predicting sleep
quality, as they serve as indirect indicators of an individual’s
sleep behavior [12].

In line with these findings, we derived key temporal
features, including bedtime, wake time, and sleep duration
(bedtime — wake time). Furthermore, to capture longitudinal
patterns and behavioral consistency, time-series features such
as lag variables (e.g., previous day’s bedtime and wake time)
and rolling statistics (e.g., 3-day and 7-day moving averages
of sleep duration) were constructed. These features were
subsequently integrated into the training process to improve
the robustness and accuracy of the predictive model.

TABLE III LIST OF ADDITIONAL DERIVED FEATURES

Feature Name Definition

The duration between bedtime and wake
Sleep Duration time.

Previous day's bedtime, wake time, and

Lag Features sleep duration

Average sleep duration over the past 3

Rolling Features and 7 days

IV. EXPERIMENTS

A. Valid Dataset

From the 450 training samples, a validation set of 40
samples (approximately 8.9%) was carefully selected. The
choice of this size was motivated by the following
considerations:

The choice of Valid Size = 40 was primarily motivated by
the following considerations:

1) Limited sample size of the dataset: Since the dataset is
based on survey responses, the total number of training
samples (450) is relatively small. To secure sufficient data for
model training, it was necessary to minimize the proportion
allocated to validation.

2) Balanced sampling across participants: The
validation set was constructed by extracting four samples per
participant from 10 participants, resulting in a total of 40
validation samples. This ensured that the validation set
retained participant-level diversity rather than being biased
toward specific individuals.

3) Distributional similarity to the public test set: The
selected validation samples were chosen from periods
temporally adjacent to the competition’s public test dataset.
This design aimed to maximize similarity in data distribution
and temporal characteristics, thereby improving the
reliability of validation results.

This validation design enabled both effective utilization of
limited training data and reliable estimation of model
generalization performance.

As illustrated in Fig. 3 and Fig. 4, the validation set exhibits
a distribution of mean wake time and mean bedtime that is
consistent with both the training and test sets. Although
individual differences across participants (e.g., early vs. late
sleepers) are clearly preserved, the overall temporal patterns
of the validation data closely align with those of the test data.
This further confirms that the validation design successfully
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captured participant-level diversity while
distributional similarity to the public test set.
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Fig. 4. Comparison of mean bedtime by participant ID.

B. Model Ensemble

To maximize predictive performance, we designed an
ensemble comprising Light Gradient Boosting Machine
(LightGBM; hereafter LGB), Extreme Gradient Boosting
(XGBoost; hereafter XGB), and a Tabular Prior-Data Fitted
Network (TabPFN). The ensemble prediction was computed
as a weighted average of the three model outputs. [ ]

A systematic grid search was employed under the
constraint that the three model weights sum to one.
Specifically, the search space was defined with a step size of
0.1 for each weight, resulting in 66 valid combinations (i.e.,
all integer multiples of 0.1 such that the sum of the weights
for LGB, XGB, and TabPFN equals one). For each candidate
weight set, the ensemble F1 score was evaluated on the
validation dataset.

Table IV summarizes the top 5 combinations. The best-
performing configuration was LGB(0.5), XGB(0.2), and
TabPFN(0.3), which achieved an F1 score of 0.7218 on the
validation dataset.

TABLE IV. TOP 5 COMBINATIONS FOR ENSEMBLE MODELS
Rank LGB XGB TabPFN Score
1 0.5 0.2 0.3 0.7218

2 0.4 0.1 0.5 0.7202
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3 0.5 0.3 0.2 0.7176
4 0.3 0.2 0.5 0.7167
5 0.5 0.1 0.4 0.7163

C. Evaluation of Imputation Effectiveness

To quantitatively assess the effectiveness of missing value
imputation, four strategies were compared: (1) retaining
missing values without imputation (Original), (2) mean
imputation, (3) KNN imputation, and (4) an LLM-based
imputation. Each method was evaluated in terms of F1 score
across six prediction targets (Q1, Q2, Q3, S1, S2, and S3).
Experiments were conducted on a validation dataset of size
40, designed to ensure consistency in evaluating model
generalizability.

The predictive model was implemented as an ensemble of
LGB, XGB, and TabPFN, with initial weights set to (0.4, 0.3,
0.3). The optimal ensemble weights for each imputation
method were determined through grid search.

As shown in Table V, the LLM-based Imputation method
achieved the highest performance, with an average F1 score
0f 0.7218 and a top weighted F1 score of 0.7238. In contrast,
the Original, Mean, and KNN approaches yielded lower
average scores, confirming the superiority of the proposed
method.

TABLE V. SUMMARY OF F1 SCORES AND OPTIMAL ENSEMBLE
WEIGHTS (VALID SIZE: 40)
Topl Weights

Method F1 (LGB, XGB, Tab) Topl F1

Original 0.6841 (0.1,0.2,0.7) 0.6998
Mean Impute 0.6684 (0.2,0.0,0.8) 0.7152
KNN Impute 0.6989 (0.2,0.1,0.7) 0.7116
LLM Impute 0.7218 (0.3,0.0,0.7) 0.7238

Table VI presents the F1 scores by target. The LLM-based
Imputation method improved S2 (sleep efficiency) to 0.7749,
which is approximately a 10 percentage-point increase over
the Original method, and also achieved the highest score for
S1 (0.524). Furthermore, it consistently outperformed other
methods in Q1 and Q3, confirming the robustness of the
approach.

TABLE VL TARGET-WISE F1 SCORES (VALID SIZE: 40)
Target Original Mean Impute KNN Impute LLM Impute
Q1 0.716 0.693 0.697 0.721
Q2 0.780 0.811 0.840 0.840
Q3 0.715 0.680 0.715 0.748
S2 0.670 0.619 0.699 0.775
S3 0.748 0.723 0.723 0.723
S1 0.476 0.484 0.519 0.524

The results indicate that imputation strategies have a
considerable influence on model performance, with the



LLM-based approach generally achieving better results
across most indicators.

As shown in Tables V and VI, the LLM method was
particularly effective in handling targets sensitive to
contextual dependencies, such as S1 and S2. Unlike statistical
or distance-based methods, the LLM-based approach
leverages temporal order, weekday/weekend patterns, and
domain-specific sleep guidelines to generate plausible
missing values. This enables the reconstruction of logically
consistent and statistically valid data, thereby enhancing the
performance of downstream predictive models.

When compared to other strategies, mean imputation
provided only modest improvements, while KNN imputation
produced moderate gains. In contrast, the LLM-based method
achieved higher Fl scores across most metrics,
demonstrating consistent advantages.

These findings suggest that generative language models,
by effectively capturing domain context, can serve as a
reliable alternative for missing value imputation.

V. CONCLUSION

This study proposed a method for imputing missing values
in sensor-based time-series lifelog data by leveraging the
contextual understanding and reasoning capabilities of Large
Language Models (LLMs). In experiments focusing on sleep
quality prediction, the LLM-based imputation demonstrated
improved performance compared to traditional methods such
as mean substitution and K-Nearest Neighbors (KNN).

Unlike conventional approaches that simply replace missing
values with averages or rely on similarity-based estimations,

the proposed method incorporated diverse domain
knowledge, including statistical summaries,
weekday/weekend patterns, seasonal factors, prior-day

context, and adherence to sleep guidelines. This enabled
context-aware and temporally consistent imputations that
more appropriately reflect actual human sleep behavior.

The experimental results suggest that LLM-based
imputation can serve as a promising alternative for improving
the quality of lifelog data, showing enhancements in both
predictive performance and the logical consistency of
reconstructed data. In particular, by embedding domain-
specific insights obtained through exploratory data analysis
into prompts, the model was guided to perform logical
imputations rather than relying on simple averages.

Furthermore, the study confirmed that performance
improvement is achievable through prompt-based inference
even without additional training, indicating the potential for
efficient utilization of LLM:s in lifelog data analysis.
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