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Abstract— This study proposes a methodology to enhance 
the classification performance of traditional machine learning 
models for lifelog data analysis by leveraging Large Language 
Models (LLMs) for missing value imputation. The reasoning 
capabilities of LLMs are used throughout the imputation 
process, and the resulting features are fed into an ensemble-
based predictor. In our evaluation, the proposed approach 
improved classification accuracy on lifelog data compared with 
conventional methods. 
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I. INTRODUCTION 

With the rapid proliferation of smart devices and the 

increasing use of wearable technology, lifelog data—
capturing diverse aspects of users’ daily lives—is being 

generated at an unprecedented scale. Such data has become 

an essential resource in domains including personalized 

services, healthcare, and behavioral analysis. It provides 

objective indicators of quality of life by encompassing 

variables such as physical activity, heart rate, and sleep 

patterns. In particular, variations in physiological signals 
during daily activities and sleep offer valuable insights into 

sleep quality, emotional states, and stress levels. 

Despite its potential, lifelog data often suffers from 

missing values and noise due to the inherent limitations of 

real-world data collection. Even with continuous monitoring 

via smartphones and smartwatches, missing or anomalous 

entries frequently occur. This problem is exacerbated by 

inconsistent device usage—for instance, users may not wear 
smartwatches during sleep—resulting in incomplete or 

fragmented sleep-related records. Such issues limit the 

reliability of downstream analyses and predictive modeling. 

To address these challenges, this study proposes an 

imputation framework that leverages the inference 

capabilities of LLMs. By imputing missing values in sensor-

derived lifelog data, we aim to enhance the informational 

quality of input features and thereby improve the accuracy of 

sleep quality prediction. Unlike conventional statistical 
methods that rely on numerical similarity or distance 

measures, LLMs can incorporate contextual knowledge, 

temporal dependencies, and domain-specific sleep rules. This 

enables them to generate plausible estimates for variables 

such as bedtime and wake time by considering 

weekday/weekend patterns, seasonal variations, and 

individual behavioral routines. 

Through this approach, logically consistent and 
statistically valid sequences can be reconstructed, effectively 

mitigating the adverse effects of missingness. As a result, the 

usable sample size increases and predictive models can 

exploit a more complete dataset. Ultimately, this study 

contributes a robust imputation strategy that enhances both 

the accuracy and generalizability of sleep quality 

classification. 

 

Fig. 1. Overall architecture of the LLM-based imputation and prediction 

model.  

II. RELATED WORK  

With the advancement of smart devices, research on 

utilizing various types of sensor data collected from 

individuals has become increasingly active. A study by 

Ribeiro et al. (2022) published in JMIR mHealth and uHealth 

provides a comprehensive review of "Lifelog" research, 

which involves collecting multimodal sensor data—such as 

images, audio, location, physical activity, and physiological 

signals—via wearables and smartphones to analyze personal 
experiences and behaviors. The paper highlights the use of 

multimodal data and retrieval/classification techniques in 

lifelog applications, including memory augmentation and 

behavioral understanding, and emphasizes that vision-based 

logs offer particularly rich information [1]. 

Meanwhile, the rapid advancement of LLMs and growing 

interest in their capabilities have spurred a wide range of 

research exploring their applications across various domains. 
In a study by Ding et al. (2024) published on arXiv, the 

authors propose a framework for addressing missing data in 
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recommendation systems using LLMs. By leveraging LLMs 

to predict and impute missing values, the framework 

overcomes the limitations of traditional mean or regression-

based methods. The study demonstrates that LLM-based 

imputation improves recommendation accuracy across 
diverse classification and regression tasks, including 

single/multi-class classification and score prediction, 

outperforming conventional statistical techniques [2]. 

Research is also actively exploring the use of LLMs to 

automate de-identification of medical clinical data. Singh et 

al. (2025), in their study on arXiv, propose the RedactOR 

framework, which performs fully automated de-identification 

of multimodal Electronic Health Records (EHR), including 
both structured and unstructured text, as well as clinical voice 

data [3]. This study suggests that generative AI can be 

effectively integrated into real-world healthcare data 

pipelines. 

In another study that proposed a framework for predicting 

and detecting individuals' physical and psychological states 

using lifelog data, the authors established a process that 

includes lifelog data collection, feature extraction, labeling, 

and model training. Based on this framework, they developed 
models to detect sleep quality, personality traits, mood, and 

depression. Experiments using real-world data confirmed that 

daily activity logs have a meaningful correlation with 

personal health conditions such as sleep and mood, and the 

overall results were promising [4]. 

Recent studies apply LLMs directly to imputation for time-

series and tabular data. Jacobsen and Tropmann-Frick 

demonstrate that, with parameter-efficient fine-tuning (e.g., 

LoRA), LLMs can achieve performance competitive with 
dedicated deep-learning imputers (e.g., SAITS) on time-

series imputation tasks [5]. In addition, GATGPT integrates 

an LLM with a spatiotemporal heterogeneous graph to jointly 

address anomaly detection, imputation, and prediction, and 

discusses the trade-offs between prompt-based and fine-

tuned approaches [6].  

Extending this line of research, our study proposes an 

LLM-based imputation framework tailored to the sleep 
lifelog setting, where missing values in key variables such as 

bedtime and wake time frequently arise due to device sparsity 

and inconsistent usage. By integrating contextual 

knowledge—including weekday/weekend patterns, seasonal 

effects, and domain-specific sleep guidelines—LLMs 

generate plausible and temporally consistent imputations that 

go beyond conventional statistical methods. These enriched 

features not only reconstruct logically coherent sleep 

sequences but also enhance the predictive performance of 
downstream ensemble classifiers, thereby offering a robust 

methodology for sleep quality prediction. 

 

III. METHODOLOGY 

A. Datasets 
For this study, we utilized the competition-provided subset 

of the 2024 ETRI Lifelog Dataset, which consisted of 450 

training samples and 250 public test samples. This subset was 

derived from the original dataset and distributed specifically 

for the challenge task. 

The original 2024 ETRI Lifelog Dataset was collected by 

the Electronics and Telecommunications Research Institute 

(ETRI) from 10 participants using smartphones, 

smartwatches, sleep sensors, and self-reporting applications. 

In total, this process yielded approximately 700 participant-

days of multimodal records, capturing both daily activities 

and sleep behaviors. The data collection protocol followed 
methodologies consistent with previous ETRI Lifelog studies 

[7–9]. 

The dataset includes 12 sensor-derived variables from 

smartphones and smartwatches (Table I), such as charging 

status, activity recognition, ambient sound, Bluetooth/Wi-Fi 

signals, GPS trajectories, illuminance, screen status, app 

usage, heart rate, ambient light, and step count. These 

multimodal features comprehensively represent both physical 
activity patterns and environmental context in everyday life. 

TABLE I.  LIFELOG DATA  

Category Data Item Description 

Smartphone-

based Data 

mACStatus Charging status 

mActivity 
Activity classification via Google 

Activity Recognition API 

mAmbience 
Ambient sound labels and 

probabilities 

mBle 
Nearby Bluetooth device 

information 

mGps GPS coordinates 

mLight 
Illuminance measured by 

smartphone 

mScreenStatus Screen usage status 

mUsageStats App usage logs and usage time 

mWifi 
Nearby Wi-Fi device 

information 

Smartwatch-

based Data 

wHr Heart rate readings 

wLight Ambient light 

wPedo Step data 

 

In addition, six sleep-related health indicators were derived 

from a combination of sleep sensor measurements and self-

reported surveys (Table II). These indicators (Q1–Q3, S1–S3) 

capture both subjective and objective aspects of sleep health, 

fatigue, and stress. Each target was labeled on a daily per-
participant basis and discretized into either binary (0/1) or 

ternary (0/1/2) levels, depending on the indicator. For 

example, Q1 denotes self-reported overall sleep quality after   

waking, while S1–S3 represent adherence to established 

sleep guidelines for total sleep time (TST), sleep efficiency 

(SE), and sleep onset latency (SOL), respectively. 

Classification criteria were predefined according to clinical 

and behavioral standards, and detailed guidelines are 

documented in the dataset release [10]. 

TABLE II.  SELF-REPORTED INDICATORS(TARGETS)  

Indicators Description  

Q1 
Overall sleep quality as perceived by a subject 

immediately after waking up. 

Q2 Physical fatigue of a subject just before sleep. 

Q3 
Stress level experienced by a subject just before 

sleep. 

S1 
Adherence to sleep guidelines for total sleep 

time (TST). 

S2 
Adherence to sleep guidelines for sleep 

efficiency (SE). 

S3 
Adherence to sleep guidelines for sleep onset 

latency (SOL, or SL). 
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B. Missing Data Types 
Sensor data with missing values can be broadly categorized 

into three types. These scenarios represent different 

challenges in modeling lifelog data, as temporal continuity 

and contextual information are crucial for predicting sleep-

related outcomes. 

1) The previous day's data (D-1) is available, but the 
current day's input data (D-Day) is missing: In this case, the 

model must generate predictions without essential 

information required for accurate inference. 

2) The previous day's data is missing, while the current 
day's input data is available: This limits the model's ability 

to reflect contextual patterns from prior data. 

3)  Both the previous and current day's input data are 
missing: In this case, the model cannot leverage learned 

temporal patterns, which may significantly degrade 

prediction performance. 
 

C. Bedtime and Wake Time Inference  
In this competition, only sensor data were provided, and 

unlike prior challenges [11], information on bedtime and 

wake time was unavailable. Nevertheless, previous studies 
have demonstrated that these variables—together with their 

difference (i.e., sleep duration)—are critical indicators of 

sleep quality and stress [12]. To compensate for this absence, 

a baseline model was first trained to evaluate feature 

importance. Based on the results and the observed frequency 

of missing values, mScreenStatus emerged as the most 

influential feature and was therefore selected as the primary 

source for inferring sleep-related variables. 

Bedtime and wake time were derived from mScreenStatus 
using the following procedure: 

1) Time Window Filtering: Screen activity records were 

restricted to the range 21:00–11:00, which typically 

encompasses the main sleep period. 
2) Noise Reduction: Isolated screen-on events within 

screen-off intervals were removed, and short awake segments 

(≤2 minutes) surrounded by sleep blocks were reclassified as 

sleep to reduce fragmentation 

3) Sleep Block Detection: Continuous screen-off 

intervals were detected, and the longest interval was 

designated as the primary sleep episode. 

4) Feature Calculation: The start of the longest block 

was defined as bedtime (21:00–02:00), the end of the block 

as wake time (03:00–11:00), and their difference as sleep 

duration (excluded if <100 minutes). 
Applying this rule-based procedure led to a substantial 

number of missing values, largely due to the inherent sparsity 
of sensor activity during sleep. In certain cases, entire days 

contained only target labels without any corresponding logs, 

underscoring a data quality challenge that degrades predictive 

performance. To address this limitation, LLMs were 

employed to impute missing bedtime and wake time entries 

by leveraging contextual patterns, statistical tendencies, and 

domain-specific knowledge. These imputed values were then 

incorporated as features for downstream prediction tasks. 
 

D. LLM-Based Missing Value Imputation Process  
The LLM-based missing value imputation procedure in this 

study was designed as a structured pipeline. The first step 

focused on selecting and configuring an appropriate model 

for stable inference. 
 

1)  Model Selection 
 

All training and inference tasks were performed in a 

Google Colab Pro+ environment equipped with an NVIDIA 
A100 GPU to ensure sufficient computational capacity. For 

the imputation process, the Qwen/Qwen3-8B model was 

employed with bfloat16 precision, and inference was 

conducted using the vLLM library for efficient memory 

management and fast decoding [13]. 

The experiment was conducted under a standardized 

configuration to ensure consistency and reproducibility. 

Specifically, the maximum token length was fixed at 37,000, 
the temperature parameter was set to 0 in order to eliminate 

sampling randomness, and the random seed was set to 42 to 

guarantee reproducibility across runs. 

 

2) Exploratory Data Analysis for Prompt Engineering 
 

Exploratory analysis revealed several domain-specific 
behavioral patterns, which were explicitly embedded into the 

prompts: 

 

 Weekend effect: Later bedtimes and wake times on 

Fridays and Saturdays. 

 Seasonal effect: Earlier wake times during July and 

August. 

 Sleep compliance effect (S1 = 2): Higher adherence 
to total sleep time guidelines was associated with 

delayed wake times. 

 

These contextual insights were incorporated into the 

prompt design to guide the model in producing realistic 

imputations rather than relying on simple statistical averages. 

 

3) Prompt Engineering for System Message 
 

The system message provided global constraints and task 

context to the LLM. It specified: 

 

 Task definition: Imputation of missing bedtime and 

wake time for sleep health prediction. 

 Time representation: Decimal-hour format (e.g., 
23.50 = 23:30, 0.75 = 00:45) 

 Valid time ranges: Bedtime = 21.0–2.0, Wake time 

= 3.0–11.0 (decimal hours). 

 Domain rules: Later wake times on weekends, 

earlier wake times in summer months, adjustments 

for S1 compliance. 

 Data integrity: Preserve all observed values, fill 

only missing fields, and avoid empty outputs. 

 

4) Prompt Engineering for User Message 
 

The user message contained task-specific instructions and 

contextual information: 
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 Imputation sequence: (i) fill missing bedtime, (ii) 

impute wake time conditional on bedtime. 

 Statistical references: Weekday- and month-

specific averages to ensure temporal consistency. 
 

5) Missing Value Generation and Validation  
 

The results of LLM-based missing value generation, as 

illustrated in Figure 2, demonstrate the model’s ability to 
infer bedtime with contextual precision using temporal 
information and weekday/month-specific averages. For 

instance, in the case of a missing value for July 10, 2024 

(Wednesday), the LLM recognized that the date 

corresponded to a weekday in July and referred to the average 

bedtime for Wednesdays in July—approximately 23.3—to 

fill in the missing data. 

During this process, the model identified that the date was 

not a weekend, thereby applying no weekend adjustment and 

instead directly using the average value. It also ensured that 
the generated value fell within the predefined valid bedtime 

range (21.0 to 2.0, based on a 24-hour decimal format). 

Unlike traditional approaches that mechanically insert 

mean values, the LLM integrates contextual conditions 

(weekday, month, weekend status) and statistical references 

(average bedtime, time range constraints) to infer missing 

values. Notably, the model correctly interprets circular time 

logic, understanding that values beyond 24:00 (e.g., 1.5 = 
1:30 AM) are still valid within the 21.0 to 2.0 range. This 

contextual awareness and adaptive generation highlight the 

distinct advantage of using LLMs over conventional 

imputation methods. 
Let's take the first missing bedtime entry: 2024-07-10, which is a 

Wednesday in July. Looking at the statistics for July, the average bedtime 

for Wednesday is 23.299999999999997. Since the user mentioned that 

the average bedtime for Wednesday in July is around 23.3, I can use that 

as a reference. However, I should also check if there are any other factors, 

like if it's a weekend or a holiday, but since it's a weekday, I can use the 

average. 

Wait, but the user also mentioned that on weekends, people tend 
to go to bed later. However, July 10th is a Wednesday, so it's a 
weekday. Therefore, using the average bedtime for Wednesday in July 

(23.3) makes sense. But I need to ensure that the value is within the 21.0 

to 2.0 range. Wait, 23.3 is within 21.0 to 2.0? Wait, no. Wait, the range 

for bedtime is 21.0 to 2.0, which is a circular range. So 21.0 to 2.0 would 

mean times from 9 PM to 12 AM, but that doesn't make sense. Wait, 

the user said that the average bedtime is in the range of 21.0~2.0 or 

3.0~11.0 for wake time. Wait, maybe there's a misunderstanding here. 

Let me recheck the instructions. 

The user mentioned that the average bedtime is in the range of 
21.0~2.0, which is a circular time range. So 21.0 is 9 PM, 2.0 is 2 AM. 
So the bedtime is between 9 PM and 2 AM. Wait, that seems odd. But 

according to the example given, 1.4776 is 1 hour 28 minutes, which is 

1:28 AM. So the bedtime is in the range of 21.0 (9 PM) to 2.0 (2 AM), 

which is a 3-hour window. That seems like a very short window for 

bedtime. Wait, maybe there's a mistake here. Alternatively, perhaps the 

range is 21.0 to 2.0, meaning that the bedtime is between 9 PM and 2 

AM, but that's a 5-hour window. Wait, 21.0 is 9 PM, 2.0 is 2 AM, so the 

range is from 9 PM to 2 AM, which is 5 hours. But the user also 

mentioned that the average bedtime is in 21.0~2.0 or 3.0~11.0 for wake 

time. Wait, maybe the bedtime is in 21.0~2.0 (9 PM to 2 AM) and wake 

time is in 3.0~11.0 (3 AM to 11 AM). That seems possible.  

Fig. 2. LLM inference log for bedtime and wake time imputation(abridged). 

Building upon the final imputed values, this study 

performed additional feature engineering to enhance the 
predictive capability of the model. Prior research has 

demonstrated that variables such as bedtime, wake time, and 

total sleep duration are highly influential in predicting sleep 

quality, as they serve as indirect indicators of an individual’s 
sleep behavior [12]. 

In line with these findings, we derived key temporal 
features, including bedtime, wake time, and sleep duration 

(bedtime – wake time). Furthermore, to capture longitudinal 

patterns and behavioral consistency, time-series features such 

as lag variables (e.g., previous day’s bedtime and wake time) 
and rolling statistics (e.g., 3-day and 7-day moving averages 

of sleep duration) were constructed. These features were 

subsequently integrated into the training process to improve 

the robustness and accuracy of the predictive model. 

TABLE III.  LIST OF ADDITIONAL DERIVED FEATURES  

Feature Name Definition 

Sleep Duration 
The duration between bedtime and wake 
time. 

Lag Features 
Previous day's bedtime, wake time, and 
sleep duration 

Rolling Features 
Average sleep duration over the past 3 
and 7 days 

 

IV. EXPERIMENTS  

A. Valid Dataset  
From the 450 training samples, a validation set of 40 

samples (approximately 8.9%) was carefully selected. The 

choice of this size was motivated by the following 

considerations: 

The choice of Valid Size = 40 was primarily motivated by 

the following considerations: 

1) Limited sample size of the dataset: Since the dataset is 

based on survey responses, the total number of training 

samples (450) is relatively small. To secure sufficient data for 

model training, it was necessary to minimize the proportion 

allocated to validation. 

2) Balanced sampling across participants: The 

validation set was constructed by extracting four samples per 

participant from 10 participants, resulting in a total of 40 

validation samples. This ensured that the validation set 

retained participant-level diversity rather than being biased 

toward specific individuals. 

3) Distributional similarity to the public test set: The 

selected validation samples were chosen from periods 

temporally adjacent to the competition’s public test dataset. 
This design aimed to maximize similarity in data distribution 

and temporal characteristics, thereby improving the 

reliability of validation results. 
This validation design enabled both effective utilization of 

limited training data and reliable estimation of model 

generalization performance. 

As illustrated in Fig. 3 and Fig. 4, the validation set exhibits 
a distribution of mean wake time and mean bedtime that is 

consistent with both the training and test sets. Although 

individual differences across participants (e.g., early vs. late 

sleepers) are clearly preserved, the overall temporal patterns 

of the validation data closely align with those of the test data. 

This further confirms that the validation design successfully 
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captured participant-level diversity while maintaining 

distributional similarity to the public test set. 
 

 

Fig. 3. Comparison of mean wake time by participant ID.  

 

Fig. 4. Comparison of mean bedtime by participant ID. 

B. Model Ensemble  
To maximize predictive performance, we designed an 

ensemble comprising Light Gradient Boosting Machine 

(LightGBM; hereafter LGB), Extreme Gradient Boosting 

(XGBoost; hereafter XGB), and a Tabular Prior-Data Fitted 

Network (TabPFN). The ensemble prediction was computed 

as a weighted average of the three model outputs. [14-16] 

A systematic grid search was employed under the 
constraint that the three model weights sum to one. 

Specifically, the search space was defined with a step size of 

0.1 for each weight, resulting in 66 valid combinations (i.e., 

all integer multiples of 0.1 such that the sum of the weights 

for LGB, XGB, and TabPFN equals one). For each candidate 

weight set, the ensemble F1 score was evaluated on the 

validation dataset. 

Table IV summarizes the top 5 combinations. The best-
performing configuration was LGB(0.5), XGB(0.2), and 

TabPFN(0.3), which achieved an F1 score of 0.7218 on the 

validation dataset.  

 

TABLE IV.  TOP 5 COMBINATIONS FOR ENSEMBLE MODELS   

Rank LGB XGB TabPFN Score 

1 0.5 0.2 0.3 0.7218 

2 0.4 0.1 0.5 0.7202 

3 0.5 0.3 0.2 0.7176 

4 0.3 0.2 0.5 0.7167 

5 0.5 0.1 0.4 0.7163 

 

C. Evaluation of Imputation Effectiveness 
To quantitatively assess the effectiveness of missing value 

imputation, four strategies were compared: (1) retaining 

missing values without imputation (Original), (2) mean 

imputation, (3) KNN imputation, and (4) an LLM-based 
imputation. Each method was evaluated in terms of F1 score 

across six prediction targets (Q1, Q2, Q3, S1, S2, and S3). 

Experiments were conducted on a validation dataset of size 

40, designed to ensure consistency in evaluating model 

generalizability. 

The predictive model was implemented as an ensemble of 

LGB, XGB, and TabPFN, with initial weights set to (0.4, 0.3, 

0.3). The optimal ensemble weights for each imputation 
method were determined through grid search. 

As shown in Table V, the LLM-based Imputation method 

achieved the highest performance, with an average F1 score 

of 0.7218 and a top weighted F1 score of 0.7238. In contrast, 

the Original, Mean, and KNN approaches yielded lower 

average scores, confirming the superiority of the proposed 

method. 

TABLE V.  SUMMARY OF F1 SCORES AND OPTIMAL ENSEMBLE 

WEIGHTS (VALID SIZE: 40) 

Method F1 Top1 Weights 
(LGB, XGB, Tab) Top1 F1 

Original 0.6841 (0.1, 0.2, 0.7) 0.6998 

Mean Impute 0.6684 (0.2, 0.0, 0.8) 0.7152 

KNN Impute 0.6989 (0.2, 0.1, 0.7) 0.7116 

LLM Impute 0.7218 (0.3, 0.0, 0.7) 0.7238 

 

Table VI presents the F1 scores by target. The LLM-based 
Imputation method improved S2 (sleep efficiency) to 0.7749, 

which is approximately a 10 percentage-point increase over 

the Original method, and also achieved the highest score for 

S1 (0.524). Furthermore, it consistently outperformed other 

methods in Q1 and Q3, confirming the robustness of the 

approach. 

TABLE VI.  TARGET-WISE F1 SCORES (VALID SIZE: 40) 

Target Original Mean Impute KNN Impute LLM Impute 

Q1 0.716 0.693 0.697 0.721 

Q2 0.780 0.811 0.840 0.840 

Q3 0.715 0.680 0.715 0.748 

S2 0.670 0.619 0.699 0.775 

S3 0.748 0.723 0.723 0.723 

S1 0.476 0.484 0.519 0.524 

 

The results indicate that imputation strategies have a 
considerable influence on model performance, with the 
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LLM-based approach generally achieving better results 

across most indicators. 

As shown in Tables V and VI, the LLM method was 

particularly effective in handling targets sensitive to 

contextual dependencies, such as S1 and S2. Unlike statistical 
or distance-based methods, the LLM-based approach 

leverages temporal order, weekday/weekend patterns, and 

domain-specific sleep guidelines to generate plausible 

missing values. This enables the reconstruction of logically 

consistent and statistically valid data, thereby enhancing the 

performance of downstream predictive models. 

When compared to other strategies, mean imputation 

provided only modest improvements, while KNN imputation 
produced moderate gains. In contrast, the LLM-based method 

achieved higher F1 scores across most metrics, 

demonstrating consistent advantages. 

These findings suggest that generative language models, 

by effectively capturing domain context, can serve as a 

reliable alternative for missing value imputation. 
 

V.  CONCLUSION 

This study proposed a method for imputing missing values 

in sensor-based time-series lifelog data by leveraging the 

contextual understanding and reasoning capabilities of Large 
Language Models (LLMs). In experiments focusing on sleep 

quality prediction, the LLM-based imputation demonstrated 

improved performance compared to traditional methods such 

as mean substitution and K-Nearest Neighbors (KNN). 

Unlike conventional approaches that simply replace missing 

values with averages or rely on similarity-based estimations, 

the proposed method incorporated diverse domain 

knowledge, including statistical summaries, 

weekday/weekend patterns, seasonal factors, prior-day 
context, and adherence to sleep guidelines. This enabled 

context-aware and temporally consistent imputations that 

more appropriately reflect actual human sleep behavior. 

The experimental results suggest that LLM-based 

imputation can serve as a promising alternative for improving 

the quality of lifelog data, showing enhancements in both 

predictive performance and the logical consistency of 

reconstructed data. In particular, by embedding domain-

specific insights obtained through exploratory data analysis 
into prompts, the model was guided to perform logical 

imputations rather than relying on simple averages.              

Furthermore, the study confirmed that performance 

improvement is achievable through prompt-based inference 

even without additional training, indicating the potential for 

efficient utilization of LLMs in lifelog data analysis. 
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