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Abstract—Recent advances in wearable technology have
enabled the prediction of sleep states using diverse physiological
signals. However, inconsistencies in data collection cycles across
sensor types and reliance on subjective assessments often result
in long-term data scarcity and severe class imbalance, which
degrade learning stability and classification performance. To
address these challenges, we propose a hybrid classification
framework that predicts both subjective and objective sleep-
related indicators from lifelog data collected via wearable
devices. The framework leverages a Variational Autoencoder
(VAE) to capture the nonlinear distribution of minority classes
and generate synthetic samples, which are combined with
original data and processed by dual SVM classifiers. A meta-
classifier is then applied to resolve conflicting predictions by
exploiting probability estimates as higher-level inputs.
Experimental results demonstrate that the proposed approach
improves minority class representation and yields notable gains
in predictive performance, particularly in F1-score and
sensitivity. These results highlight the effectiveness of
integrating generative modeling with meta-learning for reliable
sleep state prediction in imbalanced data environments.

Keywords—Wearable sensors, Sleep state prediction, Lifelog
data, Variational Autoencoder (VAE), Class imbalance, Support
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[. INTRODUCTION

Advances in wearable technology have significantly
improved the convenience and accessibility of daily sleep
monitoring. By capturing physiological signals such as heart
rate, gait patterns, and activity data, wearable devices provide
continuous and quantitative assessments of sleep quality,
offering important opportunities for early detection of sleep
disorders and personalized health management. However,
accurate prediction of sleep-related indicators remains
challenging due to (1) variability in data collection cycles
across heterogeneous sensors, which hinders reliable long-
term acquisition, and (2) severe class imbalance in
subjectively assessed indicators, which reduces model
stability and accuracy.

To investigate these issues, we utilize a lifelog dataset [1]
that characterizes daily states through six indicators, including
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Fig. 1. Overview of the proposed VAE-SVM hybrid classification
framework.

three subjective measures (sleep quality, pre-sleep fatigue,
pre-sleep stress) and three objective measures (total sleep time,
sleep efficiency, sleep latency). However, this dataset present
inherent challenges: limited sample size, imbalance across
classes, and noise in subjective evaluations. Previous
approaches have attempted to address class imbalance through
replication-based oversampling or statistical augmentation
such as SMOTE [2]. While these methods partially mitigate
imbalance, they introduce problems such as overfitting [3],
inter-sample correlation, and distortion of temporal
dependencies [4], [S]. More recent generative approaches
based on GANs and VAEs [6], [7] have shown potential but
still suffer from distributional distortions and incomplete
preservation of original data structures. These limitations
highlight the need for a more robust framework capable of
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handling both data scarcity and class imbalance in wearable-
based sleep prediction.

In this work, we propose a hybrid classification framework
that integrates Support Vector Machines (SVMs), Variational
Autoencoder (VAE)-based data augmentation, and a dual
meta-classification strategy. Specifically, two independent
SVMs are trained separately on original and VAE-augmented
data, with a meta-classifier—comprising an Artificial Neural
Network (ANN) and a Decision Tree (DT)—resolving
prediction conflicts and refining probability estimates. This
architecture not only alleviates issues caused by synthetic data
distortions but also enhances classification stability for
boundary-region samples.

The main contributions of this study are summarized as
follows:

e We present a hybrid classification framework that
explicitly addresses both class imbalance and small-
sample constraints in wearable-based sleep prediction.

e We integrate VAE-driven data augmentation with dual
SVM models to improve minority class representation
while preserving generalization.

e We design a dual meta-classifier combining ANN and
DT to refine prediction probabilities, thereby reducing
errors introduced by synthetic data.

e We validate the proposed method on a multi-device
lifelog dataset, demonstrating improved performance
in terms of stability and predictive accuracy compared
to conventional oversampling and generative
approaches.

The remainder of this paper is organized as follows.
Section II describes the methodology, including dataset
characteristics and preprocessing procedures. Section III
presents the experimental setup and results. Finally, Section
IV concludes with a summary of the findings and directions
for future research.

II. METHODOLOGY

A. Dataset

This study employs a lifelog dataset collected in 2024,
encompassing approximately 40 days of continuous records
per participant, with a total coverage of about 450 participant-
days. Data acquisition was conducted using Android-based
smartphones, smartwatches, sleep sensors, and self-reporting
applications, resulting in 12 sensor modalities. These
modalities captured a wide range of physiological and
environmental measurements related to sleep states, with
collection intervals varying from 1 to 10 minutes depending
on sensor-specific characteristics.

Several challenges emerged during data collection. Device
non-compliance  factors—including non-wear periods,
charging cycles, and system reboots—introduced substantial
missing values and noise artifacts. To protect privacy,
sensitive information such as GPS coordinates was
transformed from absolute to relative reference frames,
thereby preventing personal identification.

In addition, the six sleep-related indicators (Q1: sleep
quality, Q2: pre-sleep fatigue, Q3: pre-sleep stress, S1: total
sleep time, S2: sleep efficiency, S3: sleep latency) derived

from self-reporting applications exhibited severe class
imbalance across all target variables, as shown in Fig. 2. To
address these issues, we adopted a two-stage strategy: (1)
preprocessing techniques were applied to mitigate missing
values and noise artifacts in raw sensor data, and (2) class
imbalance in sleep indicators was alleviated during training
through dedicated data reconstruction and model calibration
methods (detailed in Section II-B).
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Fig. 2. Class distributions of sleep-related metrics.

B. Dataset Preprocessing

To mitigate missing values and measurement noise while
ensuring reliable representation of temporal dynamics, we
selected a subset of sensors from the 12 available modalities
listed in Table 1. The selection criteria prioritized sensors with
one-minute sampling intervals, as these provided sufficient
granularity for capturing temporal variations relevant to sleep-
state monitoring. Sensors with low interpretability or weak
relevance to sleep prediction were excluded or underwent
specialized preprocessing.

Specifically, the mActivity sensor was recategorized into
three discrete activity levels: low, medium, and high. The
mWifi sensor was transformed into a binary home-presence
indicator (0 or 1) based on BSSID measurements collected
between 11 p.m. and midnight. After preprocessing, a total of
seven sensor modalities were retained for subsequent analysis.
The selected modalities are summarized in Table I, where
preprocessed sensors are indicated by an asterisk (*).

TABLE L. SUMMARY TABLE OF SENSOR TYPES AND VARIABLE
USAGE
Dataset Description
Items
Feature Used Frequency(Hz)
mACStatus m_charging v 1/60
mActivity m_activity v* 1/60
mAmbience m_ambience 1/120
address
mBle device_class 1/600
rssi
altitude
mGPS latitude v 1/60
longitude
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Dataset Description
Items
Feature Used Frequency(Hz)

speed

mLight m_light 1/600

mScreenStatus m_screen_use v 1/60
app_name

mUsageStats 1/600
total_time
bssid

mWifi v* 1/600
rssi

wHr heart_rate v 1

wLight w_light v 1/60
step
step_frequency
running_step

wPedo walking_step 1/60
distance
speed
burned_calories

C. Oversampling

In Dbinary classification tasks, imbalanced class

distributions often degrade model performance by biasing
decision boundaries toward majority classes. Traditional
oversampling techniques such as SMOTE address this issue
by generating synthetic minority samples through Euclidean
distance—based interpolation. Although effective in balancing
training sets, SMOTE relies on linear interpolation and is
therefore limited in capturing complex data structures or
nonlinear boundary regions. In high-dimensional spaces, this
can lead to distributional distortions and blurred inter-class
separations.

To overcome these limitations, we adopt a Variational
Autoencoder (VAE), a probabilistic generative model that
learns latent representations of input data and reconstructs
them into the original space. Unlike interpolation-based
methods, VAE captures nonlinear structures and intrinsic
variability within minority classes, enabling the generation of
diverse and representative synthetic samples. By augmenting
sparse samples near decision boundaries, VAE improves
classifier sensitivity to boundary-region patterns, thereby
reducing misclassification and enhancing generalization.

D. Support Vector Machine

Support Vector Machines (SVMs) are well suited for
imbalanced and small-scale datasets, as they construct
separating hyperplanes that maximize class margins and rely
on a limited number of support vectors. This margin-based
learning mechanism provides stable generalization, even with
limited training samples.

The dataset in this study consists of high-dimensional
sensor-based time-series data with nonlinear distributions

arising from complex inter-variable interactions. These
characteristics require models that can handle nonlinear
decision boundaries. To address this, we employed kernel-
based SVMs, which project input data into higher-
dimensional feature spaces. In particular, the Radial Basis
Function (RBF) kernel was used to transform linearly
inseparable samples into a space where effective linear
separation becomes feasible, thereby enhancing classification
robustness.

E. Hybrid Framework

As discussed in the previous sections, VAE-based
oversampling enhances minority class representation, while
SVM provides robust classification under small and nonlinear
data conditions. However, each method has limitations when
applied independently: SVM trained only on original data may
underrepresent minority classes, and SVM trained with VAE-
augmented data may be affected by distributional distortions.

To address these issues, we propose a hybrid classification
framework, illustrated in Fig. 1. The architecture comprises
two models: SVM-Original (SVM-O), trained solely on
observed data to preserve authentic distributional
characteristics, and SVM-VAE (SVM-V), trained with both
original and VAE-generated data to enhance minority class
sensitivity. Final predictions are produced using a
conservative consensus strategy, where outcomes are
accepted only when both classifiers agree.

This hybrid design leverages the stability of SVM-O and
the augmentation strength of SVM-V, thereby improving
boundary-region classification, reducing misclassification of
minority samples, and enhancing overall prediction reliability.

F. Meta-Classifier

Although the hybrid architecture improves overall
performance, SVM-O and SVM-V may yield conflicting
predictions in boundary regions due to their different training
distributions. To resolve these inconsistencies, we introduce a
meta-classifier that refines final outputs. Since SVM-O is
trained solely on original data and thus provides more reliable
distributional representation, its class-wise prediction
probabilities are employed as inputs to the meta-classifier.

Single-structure  meta-classifiers, however, exhibit
limitations: Artificial Neural Networks (ANNs) effectively
capture nonlinear correlations but are prone to overfitting and
limited interpretability, while Decision Trees (DTs) offer
interpretable rule-based partitions but cannot adequately
model complex high-dimensional relationships. To leverage
the strengths of both, we propose a dual ANN-DT meta-
classifier, illustrated in Fig. 3. In this design, the ANN first
extracts nonlinear feature representations from SVM-O
probabilities, and the DT subsequently performs interpretable
rule-based classification on these features. This combination
simultaneously ensures expressive modeling capacity and
transparent decision-making, thereby enhancing prediction
stability in high-uncertainty regions.
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Fig. 3. Structural diagram of the meta-classifier

III. EXPERIMENT

A. Experiment Setup

All experiments were conducted in a local Windows 10
environment equipped with an Intel(R) Core(TM) i9-13900K
CPU @ 3.00GHz, 64GB RAM, and an NVIDIA GeForce
RTX 4090 GPU. The software environment was based on
Python 3.10.16, with primary dependencies including scikit-
learn 1.0.2, PyTorch 2.5.1+cull8, imbalanced-learn 0.9.0,
pandas 2.0.3, and NumPy 1.24.4.

B. Training Setup

To prevent overfitting and ensure robust generalization in
limited data scenarios, stratified 10-fold cross-validation was
adopted, with each fold preserving uniform class distributions
for stable performance evaluation. The classification model
employed an RBF kernel-based Support Vector Machine
(SVM), with the class_weight parameter set to balanced for
class imbalance correction. Other SVM hyperparameters
followed scikit-learn defaults: regularization parameter C=1.0,
RBF kernel y=scale, tolerance tol=1073, and iteration limit
max_iter=—1.

For data augmentation, the VAE utilized a 16-dimensional
latent space and a loss function combining mean squared error
(MSE) reconstruction loss with KL divergence. The VAE was
trained using the Adam optimizer with a learning rate of 0.001
over 100 epochs. Generated synthetic samples were combined
with original data to construct balanced datasets for training
the SVM-V model.

C. Evaluation Metric

To accurately assess classification performance under
imbalanced data conditions, this study employed Precision,
Recall, and F1-score as the primary evaluation metrics.

e Precision, defined as TP/(TP+FP), represents the
proportion of correctly identified positive samples
among all predicted positives. It reflects the model’s
ability to suppress false positives, which is crucial in
applications such as anomaly detection and alert
systems.

e Recall, calculated as TP/(TP+FN), measures the
proportion of actual positives correctly identified by
the model, indicating its effectiveness in detecting
minority classes without omission.

e Fl-score, the harmonic mean of Precision and Recall,
provides a balanced measure by jointly considering
both metrics. Therefore, F1-score serves as a balanced
and reliable evaluation metric in imbalanced data
scenarios.

Accordingly, this study quantitatively compared model
performance using Precision, Recall, and F1-score.

D. Comparison of Oversampling Techniques

The purpose of this study is to investigate oversampling
techniques for imbalanced data environments and
systematically evaluate their impact on the generalization
performance of classification models. For comparison, we
adopted SMOTE, a representative interpolation-based method,
and a proposed VAE-based data augmentation approach.
While SMOTE generates synthetic samples through linear
interpolation, the VAE produces nonlinear synthetic data via
probabilistic sampling in the latent space. These differing
mechanisms expand the minority class distribution in distinct
ways, thereby influencing decision boundary formation and
classifier stability.

In the experiments, three models with different
oversampling techniques but identical classifier structures
were compared:

1) Baseline model: a single classifier trained on the
original imbalanced dataset.

2) Hybrid SMOTE model: data balancing with SMOTE,
followed by reclassification of prediction mismatches using a
meta-classifier.

3) Hybrid VAE model: data balancing using VAE-
generated samples, combined with the same meta-classifier.

Performance was evaluated separately for each target
variable (Q1, Q2, Q3, S1, S2, S3), with F1-score adopted as
the primary evaluation metric to equally reflect the
performance across classes. The comparative results of the
three models—baseline, hybrid SMOTE, and hybrid VAE—
are summarized in Table II, which presents the F1-scores
obtained under different oversampling techniques.

TABLEII. COMPARISON OF F1-SCORES FOR SVM MODELS USING
DIFFERENT OVERSAMPLING TECHNIQUES
Method Target
Q1 Q2 Q3 S1 S2 S3
Baseline
SVM 0.5984 | 0.5726 | 0.5868 | 0.4188 | 0.5569 | 0.6144
Hybrid
SMOTE 0.5988 | 0.6029 | 0.6480 | 0.4314 | 0.6143 | 0.6495
H\}/’Xlgd 0.6733 | 0.6247 | 0.6564 | 0.4396 | 0.6302 | 0.6571

E. Evaluation of Meta-Classifier Input Candidatesble

To determine the most suitable input for the meta-
classifier, we compared the predicted probabilities from
SVM-O (Pred O), trained on the original data, and SVM-V
(Pred V), trained on VAE-augmented data. When tested on
the same dataset, both models produced identical outputs for
samples where their predictions were consistent; however,
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for inconsistent samples, either Pred O or Pred V was used as
input to the meta-classifier to generate the final prediction.
Since the choice of input probabilities is critical to
classification performance, we evaluated the meta-classifier
using each type of input separately. As shown in Table III,
Pred O consistently outperformed Pred V across most
evaluation metrics. This can be attributed to the fact that a
considerable portion of inconsistent samples was
misclassified by SVM-V, owing to distributional distortions
introduced during the oversampling process. In contrast,
SVM-O, trained solely on the original data, better preserved
the true class distribution and produced more reliable
predictions near the decision boundary. Therefore, Pred O
was selected as the final input to the meta-classifier in
subsequent experiments.

F. Comparison with Baseline Models

To quantitatively evaluate the effectiveness of the
proposed Hybrid-VAE  framework, we conducted
comparative experiments against representative machine
learning classifiers, including LightGBM (LGBM) [12],
XGBoost [13], and CatBoost [14]. Each model was
independently trained and evaluated on the six target
variables (Q1, Q2, Q3, S1, S2, S3), and the results are
summarized in Table IV.

The results show that all Hybrid-VAE models
outperformed their corresponding single classifiers, with the
SVM-based Hybrid-VAE achieving the best overall
performance. This improvement is largely attributed to its
margin-based decision boundary learning, which enhances
sensitivity to minority classes under imbalanced conditions.

A detailed analysis highlights two representative cases.
For S3 (sleep onset latency), all models performed similarly
(F1-score: 0.572—0.657), reflecting the reliability of objective
sensor-based measurements and well-defined binary criteria
from the National Sleep Foundation. Even in this case,
however, the Hybrid-VAE model achieved the highest score.
In contrast, S1 (total sleep time) presented greater difficulty
due to its three-class structure and the variability of individual
sleep patterns. Despite this challenge, the proposed model
achieved a notable improvement over the baseline SVM (F1-
score: 0.4188 — 0.4396, =5%).

These findings confirm that integrating VAE-based data
augmentation with meta-classifiers enhances robustness
across both binary and multi-class imbalanced environments,
consistently outperforming conventional baselines.

IV. CONCLUSION

This study proposed a hybrid classification framework for
sleep-related state prediction under imbalanced data
conditions. The approach combines an SVM trained on
original data with an SVM trained on VAE-augmented data,
while a meta-classifier resolves prediction inconsistencies
between the two. Experimental results showed that the
proposed model consistently outperformed conventional
oversampling methods and baseline machine learning
classifiers, achieving notable improvements in F1-score and
recall, particularly for minority classes.

Future work includes enhancing the meta-classifier
architecture (e.g., through deep ensemble strategies),
assessing scalability and generalizability on larger and more
diverse datasets across heterogeneous domains, and reducing
computational complexity to enable real-time prediction on
wearable devices. These efforts are expected to improve both
the clinical and practical applicability of the proposed
framework in healthcare monitoring.

TABLE IIL COMPARISON OF INPUT PROBABILITY VALUES FOR THE
META-CLASSIFIER
Target
Input
Q1 Q2 Q3 S1 S2 S3

Pred O 0.673 0.625 | 0.656 | 0.440 | 0.630 | 0.657

Pred V 0.601 0.543 | 0.574 | 0.410 | 0.583 | 0.628

TABLE V. COMPARISON OF F1-SCORE OF THE PROPOSED MODEL
AND CONVENTIONALCLASSIFIERS
Model Metrix Target

Ql Q2 Q3 S1 S2 S3
Rec. 0.602 | 0.568 | 0.638 | 0.427 | 0.575 | 0.578

LGBM Prec. | 0.607 | 0.583 | 0.672 | 0.505 | 0.617 | 0.641
F1 0.596 | 0.555 | 0.634 | 0.429 | 0.557 | 0.572
Rec. | 0.601 | 0.573 | 0.638 | 0.444 | 0.594 | 0.608
XGBoost | Prec. | 0.606 | 0.591 | 0.674 | 0.521 | 0.673 | 0.699
F1 0.599 | 0.563 | 0.636 | 0.432 | 0.583 | 0.607
Rec. | 0.624 | 0.567 | 0.608 | 0.426 | 0.550 | 0.581
Catboost Prec. | 0.628 | 0.601 | 0.660 | 0.506 | 0.643 | 0.752
Fl1 0.621 | 0.545 | 0.600 | 0.405 | 0.511 | 0.559
Rec. | 0.676 | 0.627 | 0.658 | 0.447 | 0.636 | 0.661
Prec. | 0.683 | 0.631 | 0.669 | 0.449 | 0.634 | 0.665
F1 0.673 | 0.625 | 0.656 | 0.440 | 0.630 | 0.657
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