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Abstract—Recent advances in wearable technology have 
enabled the prediction of sleep states using diverse physiological 
signals. However, inconsistencies in data collection cycles across 
sensor types and reliance on subjective assessments often result 
in long-term data scarcity and severe class imbalance, which 
degrade learning stability and classification performance. To 
address these challenges, we propose a hybrid classification 
framework that predicts both subjective and objective sleep-
related indicators from lifelog data collected via wearable 
devices. The framework leverages a Variational Autoencoder 
(VAE) to capture the nonlinear distribution of minority classes 
and generate synthetic samples, which are combined with 
original data and processed by dual SVM classifiers. A meta-
classifier is then applied to resolve conflicting predictions by 
exploiting probability estimates as higher-level inputs. 
Experimental results demonstrate that the proposed approach 
improves minority class representation and yields notable gains 
in predictive performance, particularly in F1-score and 
sensitivity. These results highlight the effectiveness of 
integrating generative modeling with meta-learning for reliable 
sleep state prediction in imbalanced data environments. 

Keywords—Wearable sensors, Sleep state prediction, Lifelog 
data, Variational Autoencoder (VAE), Class imbalance, Support 
Vector Machine (SVM), Meta-learning, Data augmentation 

 

I. INTRODUCTION  
 Advances in wearable technology have significantly 

improved the convenience and accessibility of daily sleep 
monitoring. By capturing physiological signals such as heart 
rate, gait patterns, and activity data, wearable devices provide 
continuous and quantitative assessments of sleep quality, 
offering important opportunities for early detection of sleep 
disorders and personalized health management. However, 
accurate prediction of sleep-related indicators remains 
challenging due to (1) variability in data collection cycles 
across heterogeneous sensors, which hinders reliable long-
term acquisition, and (2) severe class imbalance in 
subjectively assessed indicators, which reduces model 
stability and accuracy. 

To investigate these issues, we utilize a lifelog dataset [1] 
that characterizes daily states through six indicators, including  

 

Fig. 1. Overview of the proposed VAE-SVM hybrid classification 
framework.  

 
three subjective measures (sleep quality, pre-sleep fatigue, 
pre-sleep stress) and three objective measures (total sleep time, 
sleep efficiency, sleep latency). However, this dataset present 
inherent challenges: limited sample size, imbalance across 
classes, and noise in subjective evaluations. Previous 
approaches have attempted to address class imbalance through 
replication-based oversampling or statistical augmentation 
such as SMOTE [2]. While these methods partially mitigate 
imbalance, they introduce problems such as overfitting [3], 
inter-sample correlation, and distortion of temporal 
dependencies [4], [5]. More recent generative approaches 
based on GANs and VAEs [6], [7] have shown potential but 
still suffer from distributional distortions and incomplete 
preservation of original data structures. These limitations 
highlight the need for a more robust framework capable of *Corresponding author: Sooyeong Kwak (email: sykwak@hanbat.ac.kr). 
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handling both data scarcity and class imbalance in wearable-
based sleep prediction. 

In this work, we propose a hybrid classification framework 
that integrates Support Vector Machines (SVMs), Variational 
Autoencoder (VAE)-based data augmentation, and a dual 
meta-classification strategy. Specifically, two independent 
SVMs are trained separately on original and VAE-augmented 
data, with a meta-classifier—comprising an Artificial Neural 
Network (ANN) and a Decision Tree (DT)—resolving 
prediction conflicts and refining probability estimates. This 
architecture not only alleviates issues caused by synthetic data 
distortions but also enhances classification stability for 
boundary-region samples. 

The main contributions of this study are summarized as 
follows: 

• We present a hybrid classification framework that 
explicitly addresses both class imbalance and small-
sample constraints in wearable-based sleep prediction. 

• We integrate VAE-driven data augmentation with dual 
SVM models to improve minority class representation 
while preserving generalization. 

• We design a dual meta-classifier combining ANN and 
DT to refine prediction probabilities, thereby reducing 
errors introduced by synthetic data. 

• We validate the proposed method on a multi-device 
lifelog dataset, demonstrating improved performance 
in terms of stability and predictive accuracy compared 
to conventional oversampling and generative 
approaches. 

The remainder of this paper is organized as follows. 
Section II describes the methodology, including dataset 
characteristics and preprocessing procedures. Section III 
presents the experimental setup and results. Finally, Section 
IV concludes with a summary of the findings and directions 
for future research. 

 

II. METHODOLOGY 

A. Dataset 
This study employs a lifelog dataset collected in 2024, 

encompassing approximately 40 days of continuous records 
per participant, with a total coverage of about 450 participant-
days. Data acquisition was conducted using Android-based 
smartphones, smartwatches, sleep sensors, and self-reporting 
applications, resulting in 12 sensor modalities. These 
modalities captured a wide range of physiological and 
environmental measurements related to sleep states, with 
collection intervals varying from 1 to 10 minutes depending 
on sensor-specific characteristics. 

Several challenges emerged during data collection. Device 
non-compliance factors—including non-wear periods, 
charging cycles, and system reboots—introduced substantial 
missing values and noise artifacts. To protect privacy, 
sensitive information such as GPS coordinates was 
transformed from absolute to relative reference frames, 
thereby preventing personal identification. 

In addition, the six sleep-related indicators (Q1: sleep 
quality, Q2: pre-sleep fatigue, Q3: pre-sleep stress, S1: total 
sleep time, S2: sleep efficiency, S3: sleep latency) derived 

from self-reporting applications exhibited severe class 
imbalance across all target variables, as shown in Fig. 2. To 
address these issues, we adopted a two-stage strategy: (1) 
preprocessing techniques were applied to mitigate missing 
values and noise artifacts in raw sensor data, and (2) class 
imbalance in sleep indicators was alleviated during training 
through dedicated data reconstruction and model calibration 
methods (detailed in Section II-B). 

 

 
Fig. 2. Class distributions of sleep-related metrics. 

 

B. Dataset Preprocessing 
To mitigate missing values and measurement noise while 

ensuring reliable representation of temporal dynamics, we 
selected a subset of sensors from the 12 available modalities 
listed in Table I. The selection criteria prioritized sensors with 
one-minute sampling intervals, as these provided sufficient 
granularity for capturing temporal variations relevant to sleep-
state monitoring. Sensors with low interpretability or weak 
relevance to sleep prediction were excluded or underwent 
specialized preprocessing. 

Specifically, the mActivity sensor was recategorized into 
three discrete activity levels: low, medium, and high. The 
mWifi sensor was transformed into a binary home-presence 
indicator (0 or 1) based on BSSID measurements collected 
between 11 p.m. and midnight. After preprocessing, a total of 
seven sensor modalities were retained for subsequent analysis. 
The selected modalities are summarized in Table I, where 
preprocessed sensors are indicated by an asterisk (*). 

TABLE I.  SUMMARY TABLE OF SENSOR TYPES AND VARIABLE 
USAGE 

Items 
Dataset Description 

Feature Used Frequency(Hz) 

mACStatus m_charging ✔ 1/60 

mActivity m_activity ✔* 1/60 

mAmbience m_ambience  1/120 

mBle 

address 

 1/600 device_class 

rssi 

mGPS 

altitude 

✔ 1/60 latitude 

longitude 
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Items 
Dataset Description 

Feature Used Frequency(Hz) 

speed 

mLight m_light  1/600 

mScreenStatus m_screen_use ✔ 1/60 

mUsageStats 
app_name 

 1/600 
total_time 

mWifi 
bssid 

✔* 1/600 
rssi 

wHr heart_rate ✔ 1 

wLight w_light ✔ 1/60 

wPedo 

step 

 1/60 

step_frequency 

running_step 

walking_step 

distance 

speed 

burned_calories 

 

C. Oversampling 
In binary classification tasks, imbalanced class 

distributions often degrade model performance by biasing 
decision boundaries toward majority classes. Traditional 
oversampling techniques such as SMOTE address this issue 
by generating synthetic minority samples through Euclidean 
distance–based interpolation. Although effective in balancing 
training sets, SMOTE relies on linear interpolation and is 
therefore limited in capturing complex data structures or 
nonlinear boundary regions. In high-dimensional spaces, this 
can lead to distributional distortions and blurred inter-class 
separations. 

To overcome these limitations, we adopt a Variational 
Autoencoder (VAE), a probabilistic generative model that 
learns latent representations of input data and reconstructs 
them into the original space. Unlike interpolation-based 
methods, VAE captures nonlinear structures and intrinsic 
variability within minority classes, enabling the generation of 
diverse and representative synthetic samples. By augmenting 
sparse samples near decision boundaries, VAE improves 
classifier sensitivity to boundary-region patterns, thereby 
reducing misclassification and enhancing generalization. 

 

D. Support Vector Machine 
Support Vector Machines (SVMs) are well suited for 

imbalanced and small-scale datasets, as they construct 
separating hyperplanes that maximize class margins and rely 
on a limited number of support vectors. This margin-based 
learning mechanism provides stable generalization, even with 
limited training samples. 

The dataset in this study consists of high-dimensional 
sensor-based time-series data with nonlinear distributions 

arising from complex inter-variable interactions. These 
characteristics require models that can handle nonlinear 
decision boundaries. To address this, we employed kernel-
based SVMs, which project input data into higher-
dimensional feature spaces. In particular, the Radial Basis 
Function (RBF) kernel was used to transform linearly 
inseparable samples into a space where effective linear 
separation becomes feasible, thereby enhancing classification 
robustness. 

 

E. Hybrid Framework 
As discussed in the previous sections, VAE-based 

oversampling enhances minority class representation, while 
SVM provides robust classification under small and nonlinear 
data conditions. However, each method has limitations when 
applied independently: SVM trained only on original data may 
underrepresent minority classes, and SVM trained with VAE-
augmented data may be affected by distributional distortions. 

To address these issues, we propose a hybrid classification 
framework, illustrated in Fig. 1. The architecture comprises 
two models: SVM-Original (SVM-O), trained solely on 
observed data to preserve authentic distributional 
characteristics, and SVM-VAE (SVM-V), trained with both 
original and VAE-generated data to enhance minority class 
sensitivity. Final predictions are produced using a 
conservative consensus strategy, where outcomes are 
accepted only when both classifiers agree. 

This hybrid design leverages the stability of SVM-O and 
the augmentation strength of SVM-V, thereby improving 
boundary-region classification, reducing misclassification of 
minority samples, and enhancing overall prediction reliability. 

 

F. Meta-Classifier 

Although the hybrid architecture improves overall 
performance, SVM-O and SVM-V may yield conflicting 
predictions in boundary regions due to their different training 
distributions. To resolve these inconsistencies, we introduce a 
meta-classifier that refines final outputs. Since SVM-O is 
trained solely on original data and thus provides more reliable 
distributional representation, its class-wise prediction 
probabilities are employed as inputs to the meta-classifier. 

Single-structure meta-classifiers, however, exhibit 
limitations: Artificial Neural Networks (ANNs) effectively 
capture nonlinear correlations but are prone to overfitting and 
limited interpretability, while Decision Trees (DTs) offer 
interpretable rule-based partitions but cannot adequately 
model complex high-dimensional relationships. To leverage 
the strengths of both, we propose a dual ANN–DT meta-
classifier, illustrated in Fig. 3. In this design, the ANN first 
extracts nonlinear feature representations from SVM-O 
probabilities, and the DT subsequently performs interpretable 
rule-based classification on these features. This combination 
simultaneously ensures expressive modeling capacity and 
transparent decision-making, thereby enhancing prediction 
stability in high-uncertainty regions. 
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Fig. 3. Structural diagram of the meta-classifier 

 

III. EXPERIMENT 

A. Experiment Setup 
All experiments were conducted in a local Windows 10 

environment equipped with an Intel(R) Core(TM) i9-13900K 
CPU @ 3.00GHz, 64GB RAM, and an NVIDIA GeForce 
RTX 4090 GPU. The software environment was based on 
Python 3.10.16, with primary dependencies including scikit-
learn 1.0.2, PyTorch 2.5.1+cu118, imbalanced-learn 0.9.0, 
pandas 2.0.3, and NumPy 1.24.4. 
 

B. Training Setup 
To prevent overfitting and ensure robust generalization in 

limited data scenarios, stratified 10-fold cross-validation was 
adopted, with each fold preserving uniform class distributions 
for stable performance evaluation. The classification model 
employed an RBF kernel-based Support Vector Machine 
(SVM), with the class_weight parameter set to balanced for 
class imbalance correction. Other SVM hyperparameters 
followed scikit-learn defaults: regularization parameter 𝐶𝐶=1.0, 
RBF kernel 𝛾𝛾=scale, tolerance tol=10−3, and iteration limit 
max_iter=−1. 

For data augmentation, the VAE utilized a 16-dimensional 
latent space and a loss function combining mean squared error 
(MSE) reconstruction loss with KL divergence. The VAE was 
trained using the Adam optimizer with a learning rate of 0.001 
over 100 epochs. Generated synthetic samples were combined 
with original data to construct balanced datasets for training 
the SVM-V model. 

 

C. Evaluation Metric 
To accurately assess classification performance under 

imbalanced data conditions, this study employed Precision, 
Recall, and F1-score as the primary evaluation metrics. 

• Precision, defined as TP/(TP+FP), represents the 
proportion of correctly identified positive samples 
among all predicted positives. It reflects the model’s 
ability to suppress false positives, which is crucial in 
applications such as anomaly detection and alert 
systems. 

• Recall, calculated as TP/(TP+FN), measures the 
proportion of actual positives correctly identified by 
the model, indicating its effectiveness in detecting 
minority classes without omission. 

• F1-score, the harmonic mean of Precision and Recall, 
provides a balanced measure by jointly considering 
both metrics. Therefore, F1-score serves as a balanced 
and reliable evaluation metric in imbalanced data 
scenarios. 

Accordingly, this study quantitatively compared model 
performance using Precision, Recall, and F1-score. 

 

D. Comparison of Oversampling Techniques 
The purpose of this study is to investigate oversampling 

techniques for imbalanced data environments and 
systematically evaluate their impact on the generalization 
performance of classification models. For comparison, we 
adopted SMOTE, a representative interpolation-based method, 
and a proposed VAE-based data augmentation approach. 
While SMOTE generates synthetic samples through linear 
interpolation, the VAE produces nonlinear synthetic data via 
probabilistic sampling in the latent space. These differing 
mechanisms expand the minority class distribution in distinct 
ways, thereby influencing decision boundary formation and 
classifier stability. 

In the experiments, three models with different 
oversampling techniques but identical classifier structures 
were compared: 

1) Baseline model: a single classifier trained on the 
original imbalanced dataset. 

2) Hybrid SMOTE model: data balancing with SMOTE, 
followed by reclassification of prediction mismatches using a 
meta-classifier. 

3) Hybrid VAE model: data balancing using VAE-
generated samples, combined with the same meta-classifier. 

Performance was evaluated separately for each target 
variable (Q1, Q2, Q3, S1, S2, S3), with F1-score adopted as 
the primary evaluation metric to equally reflect the 
performance across classes. The comparative results of the 
three models—baseline, hybrid SMOTE, and hybrid VAE—
are summarized in Table II, which presents the F1-scores 
obtained under different oversampling techniques. 

TABLE II.  COMPARISON OF F1-SCORES FOR SVM MODELS USING 
DIFFERENT OVERSAMPLING TECHNIQUES 

Method Target 
Q1 Q2 Q3 S1 S2 S3 

Baseline 
SVM 

0.5984 0.5726 0.5868 0.4188 0.5569 0.6144 

Hybrid 
SMOTE 0.5988 0.6029 0.6480 0.4314 0.6143 0.6495 

Hybrid 
VAE 0.6733 0.6247 0.6564 0.4396 0.6302 0.6571 

 

E. Evaluation of Meta-Classifier Input Candidatesble 
To determine the most suitable input for the meta-

classifier, we compared the predicted probabilities from 
SVM-O (Pred O), trained on the original data, and SVM-V 
(Pred V), trained on VAE-augmented data. When tested on 
the same dataset, both models produced identical outputs for 
samples where their predictions were consistent; however, 
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for inconsistent samples, either Pred O or Pred V was used as 
input to the meta-classifier to generate the final prediction. 
Since the choice of input probabilities is critical to 
classification performance, we evaluated the meta-classifier 
using each type of input separately. As shown in Table III, 
Pred O consistently outperformed Pred V across most 
evaluation metrics. This can be attributed to the fact that a 
considerable portion of inconsistent samples was 
misclassified by SVM-V, owing to distributional distortions 
introduced during the oversampling process. In contrast, 
SVM-O, trained solely on the original data, better preserved 
the true class distribution and produced more reliable 
predictions near the decision boundary. Therefore, Pred O 
was selected as the final input to the meta-classifier in 
subsequent experiments. 

 

F. Comparison with Baseline Models 
To quantitatively evaluate the effectiveness of the 

proposed Hybrid-VAE framework, we conducted 
comparative experiments against representative machine 
learning classifiers, including LightGBM (LGBM) [12], 
XGBoost [13], and CatBoost [14]. Each model was 
independently trained and evaluated on the six target 
variables (Q1, Q2, Q3, S1, S2, S3), and the results are 
summarized in Table IV. 

The results show that all Hybrid-VAE models 
outperformed their corresponding single classifiers, with the 
SVM-based Hybrid-VAE achieving the best overall 
performance. This improvement is largely attributed to its 
margin-based decision boundary learning, which enhances 
sensitivity to minority classes under imbalanced conditions. 

A detailed analysis highlights two representative cases. 
For S3 (sleep onset latency), all models performed similarly 
(F1-score: 0.572–0.657), reflecting the reliability of objective 
sensor-based measurements and well-defined binary criteria 
from the National Sleep Foundation. Even in this case, 
however, the Hybrid-VAE model achieved the highest score. 
In contrast, S1 (total sleep time) presented greater difficulty 
due to its three-class structure and the variability of individual 
sleep patterns. Despite this challenge, the proposed model 
achieved a notable improvement over the baseline SVM (F1-
score: 0.4188 → 0.4396, ≈5%). 

These findings confirm that integrating VAE-based data 
augmentation with meta-classifiers enhances robustness 
across both binary and multi-class imbalanced environments, 
consistently outperforming conventional baselines. 

 

IV. CONCLUSION 
This study proposed a hybrid classification framework for 

sleep-related state prediction under imbalanced data 
conditions. The approach combines an SVM trained on 
original data with an SVM trained on VAE-augmented data, 
while a meta-classifier resolves prediction inconsistencies 
between the two. Experimental results showed that the 
proposed model consistently outperformed conventional 
oversampling methods and baseline machine learning 
classifiers, achieving notable improvements in F1-score and 
recall, particularly for minority classes. 

Future work includes enhancing the meta-classifier 
architecture (e.g., through deep ensemble strategies), 
assessing scalability and generalizability on larger and more 
diverse datasets across heterogeneous domains, and reducing 
computational complexity to enable real-time prediction on 
wearable devices. These efforts are expected to improve both 
the clinical and practical applicability of the proposed 
framework in healthcare monitoring. 

TABLE III.  COMPARISON OF INPUT PROBABILITY VALUES FOR THE 
META-CLASSIFIER 

Input 
Target 

Q1 Q2 Q3 S1 S2 S3 

Pred O 0.673 0.625 0.656 0.440 0.630 0.657 

Pred V 0.601 0.543 0.574 0.410 0.583 0.628 

 

TABLE IV.  COMPARISON OF F1-SCORE OF THE PROPOSED MODEL 
AND CONVENTIONALCLASSIFIERS 

Model Metrix Target 
Q1 Q2 Q3 S1 S2 S3 

LGBM 

Rec. 0.602 0.568 0.638 0.427 0.575 0.578 

Prec. 0.607 0.583 0.672 0.505 0.617 0.641 

F1 0.596 0.555 0.634 0.429 0.557 0.572 

XGBoost 

Rec. 0.601 0.573 0.638 0.444 0.594 0.608 

Prec. 0.606 0.591 0.674 0.521 0.673 0.699 

F1 0.599 0.563 0.636 0.432 0.583 0.607 

Catboost 

Rec. 0.624 0.567 0.608 0.426 0.550 0.581 

Prec. 0.628 0.601 0.660 0.506 0.643 0.752 

F1 0.621 0.545 0.600 0.405 0.511 0.559 

Our  
Model 

Rec. 0.676 0.627 0.658 0.447 0.636 0.661 

Prec. 0.683 0.631 0.669 0.449 0.634 0.665 

F1 0.673 0.625 0.656 0.440 0.630 0.657 
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