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Abstract— This paper presents MIS-LSTM, a hybrid
framework that joins CNN encoders with an LSTM sequence
model for sleep quality and stress prediction at the day level
from multimodal lifelog data. Continuous sensor streams are
first partitioned into N-hour blocks and rendered as multi-
channel images, while sparse discrete events are encoded with a
dedicated 1D-CNN. A Convolutional Block Attention Module
fuses the two modalities into refined block embeddings, which
an LSTM then aggregates to capture long-range temporal
dependencies. To further boost robustness, we introduce
UALRE, an uncertainty-aware ensemble that overrides low-
confidence majority votes with high-confidence individual
predictions. Experiments on the 2025 ETRI Lifelog Challenge
dataset show that Our base MIS-LSTM achieves Macro-F1
0.615; with the UALRE ensemble, the score improves to 0.647,
outperforming strong LSTM, 1D-CNN, and CNN baselines.
Ablations confirm (i) the superiority of multi-channel over
stacked-vertical imaging, (i) the benefit of a 4-hour block
granularity, and (iii) the efficacy of modality-specific discrete
encoding.

Keywords—Lifelog, Sleep Quality, Stress Level, Multivariate
Time Series, CNN-LSTM, Ensemble

I. INTRODUCTION

Poor sleep quality and high stress levels are related to
serious health consequences, including elevated risks of
cardiovascular disease, depression, impaired cognition, and
weakened immune function. Chronic sleep deprivation also
disrupts emotional regulation, creating a vicious cycle
between stress and sleep problems [1], [2]. These issues have
driven growing interest in lifelog data from wearables and
smartphones as a means to continuously monitor daily
behaviors and infer sleep and mental well-being. Lifelog
sensor streams (e.g., activity, heart rate, ambient context)
provide rich information reflecting an individual’s daily
lifestyle, which can yield insights into sleep patterns and stress
in naturalistic settings [3]. Advanced wearable sensors
combined with deep learning models enable unobtrusive
health monitoring from such data [4], and have already shown
promise in automatic sleep-stage recognition [5].

Recent advances in time-series modeling fall into two
complementary paradigms. On one hand, sequential
architectures—such as Long Short-Term Memory networks
(LSTMs) and Time-Series Transformers (TSTs) [6], which—
being inspired by the Transformer architecture [7]—capture
long-range sequences. However, their emphasis on global
sequence modeling often comes at the expense of fine-grained,
non-linear motifs that manifest over short intervals. On the
other hand, image-based approaches embed fixed-length
windows of the series as two-dimensional “images” and apply
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convolutional neural networks (CNNs). Through sliding
convolutional filters, CNNs are well-suited to detecting
localized temporal patterns—such as periodic cycles, abrupt
transitions, and peaks—by convolving over adjacent time
steps [8]. Moreover, by allocating each continuous variable to
its own channel, these models learn cross-channel interactions
via 3D kernel (CxHxW), preserving cross-feature interactions
while encoding each modality efficiently. However, despite
their powerful local feature extraction, CNNs’  fixed
receptive fields and the implicit loss of exact temporal
ordering limit their ability to reason over long - range
temporal dependencies.

To integrate the complementary strengths of convolutional
and LSTM architectures while addressing their respective
shortcomings, we introduce MIS-LSTM: Multichannel
Image—Sequence LSTM, a hybrid CNN-LSTM architecture.
In our day-level sleep quality and stress prediction framework,
raw sensor streams are first divided into fixed-length, N-hour
blocks. Within each block, we distinguish between two
feature types:

e Continuous features (e.g., heart rate, distance traveled)
are real-valued and dense, capturing fine-grained
physiological or motion signals

e Discrete features (e.g., activity category, smartphone
on/off status) are integer-valued and sparse, encoding
categorical or event-driven states.

Because these modalities exhibit different properties,
jointly convolving them can impede learning; instead, each is
processed through a dedicated CNN encoder optimized for its
characteristics. The block-wise feature maps produced by
these encoders are then concatenated and passed through a
Convolutional Block Attention Module (CBAM) [9] to
emphasize salient patterns across feature maps, yielding a
refined N-hour representation. Finally, the sequence of these
block representations serves as input to a LSTM, which
captures global, day-level temporal dependencies. This two-
stage pipeline (i) excels at extracting localized, nonlinear
motifs via CNNs and (ii) integrates these local features over
longer horizons through the LSTM, leading to superior
performance on lifelog-based time-series tasks. Our method is
summarized in Figure 1.

Furthermore, we propose a novel ensemble strategy that
improves robustness by leveraging prediction confidence.
Multiple model variants are trained, and for each sample, we
examine the logit margin (difference between the top two or
three class scores) as a confidence measure. For ambiguous
cases (low margin), standard majority voting is used, whereas

1701 ICTC 2025



for certain cases (high margin) where the top-performing
model strongly disagrees with the ensemble majority, we
selectively override the majority vote with the confident
prediction. This adaptive voting mechanism systematically
resolves conflicting votes by privileging the most confident
model, effectively correcting cases where the majority might
be mistaken.

Experimental results show that on a public lifelog dataset
from the 2025 challenge (predicting daily sleep quality (Q1—
Q3) and sleep health metrics (S1-S3)), we demonstrate that
the proposed framework significantly outperforms baselines.
In particular, it yields substantially higher Macro-F1 scores
than: (a) an raw LSTM baseline, (b) a raw CNN and only use
ID-CNN, (c) our model variant in which the dedicated
discrete feature branch is omitted. We also conduct ablation
studies to validate the benefit of multi-channel image
encoding over alternative representations (tested on N-hour
blocks with N in 2,4,6), and ensemble refinement on
performance.

The contributions of this paper are as follows:

1) Hybrid Sequential-Image Framework: We introduce a
two-stage CNN—LSTM architecture for time-series prediction
that encodes time-series into N-hour block representations for
local pattern extraction via CNN, and integrates these
representations across N-hour blocks with an LSTM to
capture long-range temporal dependencies.

2) Modality-Specific Feature Modeling: We design a
hybrid processing pipeline that preserves feature
characteristics by handling continuous sensor streams through
multi-channel CNN encoding and discrete, sparse signals
through a dedicated 1D-CNN branch, yielding superior
performance compared to merging all features in a single
representation.

3) Uncertainty-Aware Logit-Refined Ensemble (UALRE):

We propose a novel ensemble strategy that computes logit
margins as a confidence signal, applying standard majority
voting for low-confidence samples and selectively overriding
the vote when a highly confident model conflicts with the
ensemble, thereby improving robustness over traditional soft
or hard voting schemes.

II. RELATED WORK

A. Lifelog-Based Sleep and Stress Prediction

The problem of predicting sleep quality and stress from
personal lifelogs has gained traction recently, particularly
through competitive research challenges. In the 2024 ICTC
“Predicting Sleep Quality and Emotional States” multi-label
challenge [10], several teams proposed novel deep learning
solutions for lifelog prediction. For example, Kim et al. [11]
proposed TraM, which leverages a Time Series Transformer
(TST) for labels with strong temporal dynamics and a
Machine Learning Ensemble for labels requiring aggregated
daily statistics. Similarly, Kim et al. [12] introduced a LSTM—
based framework that applies data augmentation—
specifically, time-shifting and noise injection—to generate
multiple lifelog variations, followed by an ensemble of these
variants to obtain the final prediction. While these methods
demonstrate strong performance and effectively model the
characteristics of time series data, they inherently struggle to
capture fine-grained local temporal patterns that convolutional
operations excel at extracting. In contrast, our approach
employs a convolutional neural network (CNN), enabling its

convolutional kernels to explicitly learn local temporal
features prior to higher-level sequence modeling.

B. Multivariate Time-Series Data as Images

Several recent works have reformulated multivariate time
series data as images for CNN - based prediction.
PixleepFlow [13] constructs each sensor feature as a 2D
matrix—mapping time to the x-axis and feature magnitude to
the y-axis—and then vertically stacks these matrices into a
single - channel (grayscale) image for sleep quality and stress
prediction. In contrast, Oh et al. [14] assign each feature its
own image channel, thereby leveraging the spatial inductive
bias of CNNs more effectively than the single - channel
approach of PixleepFlow. Although these image - based
methods excel at capturing local temporal motifs, they
inherently do not encode long - range dependencies as
sequential models do. Our MIS-LSTM framework bridges
this gap by first extracting fine - grained feature
representations with a multichannel CNN and then integrating
them over extended horizons using a LSTM.

III. DATASET AND PREPROCESSING

A. 2025 ETRI Lifelog Analytics Challenge Dataset

We evaluate our approach on the publicly released dataset
from the 2025 ETRI Lifelog Analytics Challenge, which
focuses on predicting daily sleep quality and stress-related
metrics from multimodal sensor data. The dataset consists of
smartphone and smartwatch lifelog data collected from
multiple participants over a continuous period (several weeks).
Each day of data is labeled with six target metrics: three
subjective self-reports and three objective sleep measurements.
The data were recorded via participants’ Android smartphones
and wearable devices with sampling intervals ranging from 1
to 10 minutes [10]. Due to varying usage patterns, the raw data
contains occasional missing values and noise (e.g., periods
when a device was not worn or was charging). We describe
the input features and output metrics below.

The detailed structure of individual sensor data (input) items
is summarized in Table 1. Each data item is stored as an
individual data file and is provided along with the participant
ID and timestamp. In the 2025 Challenge, six labels (Q1-Q3,
S1-S3) are provided following the format of prior years, as
detailed in Table 2. Q1-Q3 are binary labels derived from
daily questionnaires (above vs. below each individual’s mean),
while S1-S3 are adherence-based sleep metrics (ternary for
total sleep time; binary for sleep efficiency and sleep onset
latency), computed against National Sleep Foundation
guidelines [15].

Although the challenge prescribes 450 days for training
and 250 days for held-out testing (with test labels withheld),
we approximate an end-to-end evaluation by applying an
80/20 stratified split—at the subject level—on the publicly
available data, ensuring proportional representation of each
participant in both subsets. All model development and
hyperparameter tuning are performed on the training partition,
with final performance reported on the validation partition.
We frame the task as multi-label classification, predicting all
six daily metrics simultaneously, and evaluate performance
via the weighted sum of their Macro-F1 scores.
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Table 1: Overview of multimodal lifelog sensor streams,
including frequency, data types, and brief descriptions of each
feature.

Table 3: Overview of discrete and continuous sensor features,
their per - interval aggregation descriptions, and resulting
feature counts.

Items Freq. (Hz) Data type Note Discrete
| mACStatus 160 nteger 0: No, 1: Charging Feature name Description Num. Features
ctviy e meger 0: in_vehicle, 1: on_bicycle, 2: on_foot, 3: still, Total counts of activity codes within each 30-
[4: unknown, 5 tilting, 7: walking, 8: running mActivity minute interval: vehicle (0), bicycle (1), still (3), 4
mAmbience 1/120 object List of ambient sound labels and their respective .
walking (7).
mBle 1/600 object List of Bluetooth device address, device_class, and RSSI g (7)
'H:ps 1/60 object List of (altitude, latitude, longitude, speed) mbience Total counts of ambient context levels within each 3
'j'“;i ht S :;zgo float th—s—bic'f'g ht in Ix unit 30-minute interval: low (0), medium (1), high (2).
mScreenStatus integer : No, 1: Using screen " . -
mUsageStats 1/600 object List of app names and their usage times (ms) mScreenStatus Total screen-on duration within each 30-minute 1
[mwifi 1/600 object List of base station ID (BSSID) and RSSI interval.
wHr 1/60 object List of heart rate i B N s .
wLight 1600 foat Ambieat light in bx wnit CStatus Total charging duration within each 30-minute 1
float; float; [Number of calories; Distance in meters; Speed in kmv/h unit; interval.
sk 1/60 float; integer; float |Number of steps; Step frequency in a minute
. . : Continuous

.. . . . Feature name Description Num. Features
Table 2: Deﬁm.tlons and value fengodlngs for the six daily sleep 5 Max Bluctooth RSSI per I-minute interval 1
and stress metrics used as prediction targets mGps Travel distance per 1-minute interval 1
Metric Values mUseageStats Sum of app usage time per 1-minute interval 1
Q1 Overall sleep quality as perceived after waking up |0: Below individual average, 1: Above individual average mWifi Max Wi-Fi RSSI and device count per 1-minute 2
Q2 [Physical fatigue level just before sleep 0: High level of fatigue, 1: Low level of fatigue
Q3 Stress level justbefore sleep 0: High level of stress, 1: Low level of stress wHr Mean heart rate per 1-minute interval 1
e T wLigh Ambient ight evel per 1-minute interval !
s3 [Adherence to sleep guidelines for sleep onset latency (SOL) __ |0: I
Cmmgfones Dgas Gt D e P ——
(1,0.... 1,0,0] nL1..511]
. 0,3 ..... 2,1,0
B. Data Preprocessing [[[3,2. 5 Lal]} { o 33“:”]
To prepare the raw multimodal lifelog streams for our 1.2... 0.4,0) 0.2.51,2,0
MIS-LSTM framework, we employ a modality - aware CNN NN |[1DONW | e NN | [ 1D NN
preprocessing pipeline that jointly addresses feature relevance, v 7
temporal regularization, noise filtering, and normalization. ( LITTD) ( ( 1)

First, we restrict the input space to those features shown to be
predictive in prior work [12], [13], thereby reducing
redundancy and computational overhead (Table 3).
Continuous, real - valued features are resampled via linear
interpolation onto a uniform one - minute windows (1,440
timesteps per day), producing dense, evenly spaced series
suitable for convolutional encoding. In contrast, discrete,
integer - valued event features are inherently sparse and are
therefore aggregated into ten - minute windows (144
timesteps per day). Within each window, we compute
summary statistics (event counts, durations) to capture
essential patterns without introducing excessive sparsity. To
mitigate excessive impact of outlier, values that lie outside are
clipped to valid bounds or removed entirely. Finally, each
channel is standardized to zero mean and unit variance. The
outcome of this pipeline is two modality - specific matrices—
one for the high - resolution continuous grid and one for the
discretized event sequence—that are then processed by
dedicated encoder branches (a multi - channel 2D - CNN and
a lightweight 1D - CNN, respectively), enabling the network
to learn modality - specific representations.

IV. PROPOSED METHODOLOGY
Our framework consists of two sequential stages:

1) CNN-based sensor feature encoding, Continuous
features—sampled at one-minute intervals—and discrete
features—sampled at ten-minute intervals—are partitioned
into N-hour blocks and processed by modality-specific CNN
encoders, respectively, generating a sequence of block-level
feature maps for each day

2) Multichannel Image Sequence LSTM, The resulting
sequence of block-level feature maps for both continuous and
discrete modalities is then fed into a unified LSTM, which

Long Short-Term Memory

subject embs

[0,1,1,2,1,0] €3 (

)

Fig. 1: Overview of a Multichannel Image—Sequence LSTM
(MIS-LSTM) framework (4-hour block intervals)

jointly attends to local patterns within each block and global
dependencies across blocks to capture comprehensive
temporal relationships.

A. Continuous Feature Encoding with Multi-Channel N-
hour Block Image

As described in Section III, we employ modality-specific
encodings for discrete and continuous features. Continuous
features are first segmented into N-hour blocks, each of
which is rendered as a two-dimensional, grayscale image
(where the x-axis denotes time and the y-axis represents the
corresponding feature value at each time point). This process
produces K separate images—one for each feature. However,
since each N-hour block must represent all K feature maps
simultaneously, we merge these K images into a single,
unified representation.

Conventional time-series CNNs employ a “stacked
vertical” encoding, in which each feature’s image is
concatenated along the vertical axis into a single unified
image (Figure 2, left). However, we found that using such a
single-channel (gray scale) image leads to inferior
performance, as the CNN’s convolutional filters struggle to
separate features effectively when they are overlaid in one
channel. Instead, we adopt a “stacked channel” encoding,
(Figure 2, right) where each sensor feature becomes one
channel in a multi-channel image for the block —analogous
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Continuous feature images for N-hour block

Stack vertically Multi Channel

e N

i Ml
1

IV
LI

[1, 224, 224]

[7, 224, 224]

Fig. 2: Illustration of two strategies for representing
multivariate time- series images as a unified image. Left:
Stacked-Vertical (single-channel) Right: Stacked-Channel
(multi-channel)

to the R, G, and B channels of a color image. This multi-
channel method enables the network to apply feature-specific
kernels and then integrate them, yielding superior learning of
complex patterns. Finally, integrated N-hour block image is
fed into our ResNet-based CNN encoder to produce an N-
hour embedding for downstream sequence modeling.

B. Discrete Feature Encoding with 1D-CNN

Unlike continuous features, discrete features indicate the
occurrence or category of an event at specific time points
rather than varying continuously in magnitude. Moreover,
because discrete signals tend to be relatively sparse, their
advantages when represented as two-dimensional images are
limited. Encoding both continuous and discrete modalities
with the same 2D-CNN can therefore impair overall
performance. To address this, we employ a dedicated one-
dimensional convolutional network (1D-CNN) for discrete
data. By leveraging this modality - specific feature modeling,
we obtained feature maps that faithfully preserved the intrinsic
characteristics of each data modality (Figure 3).

C. LSTM for Image-Encoded Sequences

The embeddings produced by the CNN encoder for each
N-hour block effectively capture local patterns within blocks
but are limited in modeling the temporal continuity and long-
range dependencies across blocks (i.e across hours). To
address this limitation and characterize day-level
representation, we introduce an LSTM (Long Short-Term
Memory) layer. We first concatenate the N-hour block
embeddings derived separately from continuous and discrete
features, then apply a Convolutional Block Attention Module
(CBAM) to emphasize salient channels and spatial regions.
The refined sequence of block embeddings is subsequently

Kemel (size=4)

Discrete features /
_— (2-our block) ~~.
Sipe — Ghowrblod ™~/

Kemel (size=3)

Kemel (size=2)

\ —

\ —

Fig. 3: Discrete feature encoding via 1D-CNN. The input is a
matrix whose rows correspond to time steps and columns to
discrete features. Multiple one-dimensional convolutional
filters of varying kernel sizes are applied along the temporal
axis; each resulting feature map is max pooled and then
concatenated to form the unified discrete embedding.

fed into the LSTM, enabling the model to learn both inter-
block temporal continuity and long-term dependencies.
Finally, the LSTM’s final hidden state is passed to a
classification layer to predict the six target metrics (Q1-Q3
and S1-S3). Additionally, because the 2025 Lifelog
Challenge dataset comprises only ten participants, modeling
individual-specific characteristics is highly advantageous.
Accordingly, we introduce a learnable subject embedding for
each participant and concatenate it with the LSTM’s final
hidden state, thereby enabling the network to incorporate and
learn identity information alongside the extracted features.
This three-stage CNN-CBAM-LSTM pipeline
synergistically combines fine-grained intra-block feature
extraction with inter- block sequential modeling,
substantially improving daily sleep quality and stress
prediction performance.

D. Uncertainty-Aware Logit-Refined Ensemble (UALRE)

Based on the predictions produced by MIS-LSTM, we
conducted an additional ensemble phase. Conventional
ensembles [16] typically rely on one of two strategies: Soft
voting — averaging either the raw logits or their soft-maxed
probabilities across models and then taking the arg max. Hard
voting — ignoring the logits entirely and selecting the class
chosen by the majority of models. Because both strategies
assign equal weight to every model output, performance can
deteriorate when a few high-quality models are outnumbered
by inferior ones. To address this drawback, we introduce the
Uncertainty-Aware Logit-Refined Ensemble (UALRE):

e Step 1 (confidence filtering): For the best individual
model, we treat samples with a large logit margin (high
inter-class gap) as “confident.” These predictions are
accepted without modification
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Table 4. Macro-F1 scores for each target metric, comparing LSTM, 1D-CNN, CNN, and our MIS-LSTM.

Model Ql Q Q3 Sl ) S3 Avg
LSTM 0.63 0.581 0.561 0.436 0.632 0.651 0.576
1D-CNN 0.592 0.554 0.542 0.468 0.602 0.599 0.559
CNN 0.614 0.567 0.576 0.414 0.458 0.649 0.578
MIS-LSTM 0.625 0.626 0.618 0.486 0.65 0.682 0.615
MIS-LSTM (w/o discrete) 0.615 0.574 0.621 0.449 0.629 0.677 0.594

e Step 2 (selective hard voting): For the remaining
“uncertain” samples(low inter-class gap) we apply
hard voting, but we restrict the ballot to predictions
from other models only on the samples they deem
confident (i.e., high inter-class gap). This ensures that
even low-performing models contribute only when

they are internally certain.

By coupling confidence filtering with selective hard
voting, UALRE preserves the strengths of the most reliable
model while leveraging complementary information from the
ensemble only where it is trustworthy, thereby mitigating the
equal-weight limitation of traditional soft- and hard-voting
schemes.

V. EXPERIMENT

A. Experimental Setup & Baselines

For discrete features, we employ a one - dimensional
CNN in PyTorch, instantiating 16 filters for each kernel size
in {3,4,5,6} and aggregating their outputs via max-over-
time pooling. Continuous features are encoded with a
SEResNeXt101_32x4d backbone (timm library) [17], which
we train from scratch—eschewing ImageNet pretraining—
and modify its first convolution to accept seven input
channels (one per continuous feature) instead of three. We
fuse the concatenated discrete and continuous block
embeddings (N-hour blocks) and refine them with a
Convolutional Block Attention Module (CBAM). To capture
global temporal dependencies across N-hour blocks, a two-
layer LSTM (model dimension = 256), also implemented in
PyTorch.

Optimization proceeds with AdamW (learning rate 3e-5,
mini-batch size 16). Because the label distribution is
markedly skewed, we used Focal Loss instead of cross-
entropy. Training spans 200 epochs; to mitigate overfitting
on the limited dataset, we select the checkpoint achieving the
highest validation macro-F1 rather than the lowest validation
loss, and report results using that model.

To assess the efficacy of our framework, we compare
against the following baselines:

e LSTM: All features sampled at 10-minute intervals are
fed into a standard LSTM. The hidden size and number

of layers match those used in our proposed model.

1D-CNN: All features sampled at 10-minute intervals
are processed by a one-dimensional CNN, employing
identical kernel sizes and filter counts in our proposed
model and does not employ N-hour block
segmentation or downstream sequence modeling.
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Table 5. Macro-F1 comparison of three ensemble strategies.

Ensemble method F1 score (macro)

soft-vote 0.621
hard-vote 0.614
UALRE (ours) 0.647

Table 6: Macro-F1 scores for discrete feature encoding
using  multi - channel  versus stacked - vertical
representations at varying N-hour block lengths.
4hours 6hours
(6 images per day) (4 images per day)
0.615 0.601
0.591 0.588

2hours

(12 images per day)
0.593
0.581

multi-channel
stacked-vertical

e CNN: All features sampled at 1-minute intervals are
converted into multi-channel images and passed
through a SEResNeXt101 32x4d backbone. This
variant does not employ N-hour block segmentation

nor the downstream LSTM and uses only a CNN.

B. Main Result

Table 4 summarizes the Macro-F1 scores for each target
metric and the overall average across baselines and our MIS-
LSTM. Our model achieves the highest average score (0.615),
outperforming the strongest baseline (CNN). These results
demonstrate that (i) modality-specific CNN encoders
effective-ly capture both continuous and discrete signals, and
(i1) the subsequent LSTM integration robustly models day-
level sequential dependencies. In particular, the largest
improvements on Q2 and S3 suggest that our hybrid
architecture excels at both fine-grained emotional state
detection and sleep health assessment, validating the benefits
of multi-channel imaging.

Additionally, to assess the impact of our Modality-
Specific Feature Modeling for discrete data, we conduct an
ablation study on a variant (“MIS-LSTM w/o discrete”) that
instead treats discrete signals as additional channels in the
same 2D-CNN used for continuous features, rather than
routing them through a dedicated 1D-CNN branch. This
ablation achieves an average Macro-F1 of 0.594 yet still
outperforms the other baselines. The resulting performance
gap confirms that processing sparse, event-driven signals via
a 1D-CNN branch provides a meaningful boost in capturing
discrete feature representation.

Finally, we apply our UALRE to the model outputs from
Tables 4 and 6. As Table 5 shows, UALRE achieves a
Macro - F1 of 0.647, outperforming standard soft voting
(0.621) and hard voting (0.614). This demonstrates that
selectively overriding low - confidence majority decisions



with high - confidence predictions yields more robust
performance than traditional voting schemes.

C. Effect of N-hour Block Length

To assess the effect of N-hour block length, we
experimented with N =2, 4, and 6 hours—yielding 12, 6, and
4 blocks per day, respectively—and report the resulting
Macro-F1 scores in Table 6. We also compared two
continuous-feature encoding strategies: multi-channel versus
stacked-vertical. Across all block lengths, the multi-channel
approach consistently outperformed the stacked-vertical
baseline, suggesting that treating each feature as an
independent channel reduces inter-feature interference and
more effectively captures complex local patterns. Examining
block length, N=4 hours attained the highest score (0.615),
which we attribute to a trade-off between global context and
local motif learning: shorter blocks fragment long-range
dependencies, whereas longer blocks dilute fine-grained
temporal features, with 4-hour segmentation striking the
optimal balance.

VI. CONCLUSION

We have presented MIS-LSTM, a novel hybrid
architecture that couples multi-channel CNN encoders for
both continuous and discrete lifelog features with an LSTM
backbone to jointly capture fine-grained temporal motifs and
long-range dependencies. By integrating a Convolutional
Block Attention Module to fuse modality-specific
embeddings and introducing UALRE—an uncertainty-aware
logit-refined ensemble—we achieves the best performance
among evaluated methods on the 2025 ETRI Lifelog
Challenge. Our extensive ablations confirm the efficacy of
multi-channel over stacked-vertical imaging, the optimality
of a 4-hour segmentation, and the benefit of a dedicated 1D-
CNN branch for sparse discrete events. Beyond raw
performance, MIS-LSTM’s block-level interpretability,
personalized subject embeddings, and modality-specific
design position it as a practical foundation for real-time sleep
and stress monitoring. We anticipate that this framework will
advance personalized digital health solutions by enabling
early detection of anomalies and delivering actionable
insights into daily behavior patterns and stress monitoring.
We anticipate that this framework will advance personalized
digital health solutions by enabling early detection of
anomalies and delivering actionable insights into daily
behavior patterns.
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