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Abstract— This paper presents MIS-LSTM, a hybrid 
framework that joins CNN encoders with an LSTM sequence 
model for sleep quality and stress prediction at the day level 
from multimodal lifelog data.  Continuous sensor streams are 
first partitioned into N-hour blocks and rendered as multi-
channel images, while sparse discrete events are encoded with a 
dedicated 1D-CNN.  A Convolutional Block Attention Module 
fuses the two modalities into refined block embeddings, which 
an LSTM then aggregates to capture long-range temporal 
dependencies.  To further boost robustness, we introduce 
UALRE, an uncertainty-aware ensemble that overrides low-
confidence majority votes with high-confidence individual 
predictions.  Experiments on the 2025 ETRI Lifelog Challenge 
dataset show that Our base MIS-LSTM achieves Macro-F1 
0.615; with the UALRE ensemble, the score improves to 0.647, 
outperforming strong LSTM, 1D-CNN, and CNN baselines. 
Ablations confirm (i) the superiority of multi-channel over 
stacked-vertical imaging, (ii) the benefit of a 4-hour block 
granularity, and (iii) the efficacy of modality-specific discrete 
encoding.  

Keywords—Lifelog, Sleep Quality, Stress Level, Multivariate 
Time Series, CNN–LSTM, Ensemble 

I. INTRODUCTION  
Poor sleep quality and high stress levels are related to 

serious health consequences, including elevated risks of 
cardiovascular disease, depression, impaired cognition, and 
weakened immune function. Chronic sleep deprivation also 
disrupts emotional regulation, creating a vicious cycle 
between stress and sleep problems [1], [2]. These issues have 
driven growing interest in lifelog data from wearables and 
smartphones as a means to continuously monitor daily 
behaviors and infer sleep and mental well-being. Lifelog 
sensor streams (e.g., activity, heart rate, ambient context) 
provide rich information reflecting an individual’s daily 
lifestyle, which can yield insights into sleep patterns and stress 
in naturalistic settings [3]. Advanced wearable sensors 
combined with deep learning models enable unobtrusive 
health monitoring from such data [4], and have already shown 
promise in automatic sleep-stage recognition [5].  

Recent advances in time-series modeling fall into two 
complementary paradigms. On one hand, sequential 
architectures—such as Long Short-Term Memory networks 
(LSTMs) and Time-Series Transformers (TSTs) [6], which—
being inspired by the Transformer architecture [7]—capture 
long-range sequences. However, their emphasis on global 
sequence modeling often comes at the expense of fine-grained, 
non-linear motifs that manifest over short intervals. On the 
other hand, image-based approaches embed fixed-length 
windows of the series as two-dimensional “images” and apply 

convolutional neural networks (CNNs). Through sliding 
convolutional filters, CNNs are well-suited to detecting 
localized temporal patterns—such as periodic cycles, abrupt 
transitions, and peaks—by convolving over adjacent time 
steps [8]. Moreover, by allocating each continuous variable to 
its own channel, these models learn cross-channel interactions 
via 3D kernel (C×H×W), preserving cross-feature interactions 
while encoding each modality efficiently. However, despite 
their powerful local feature extraction, CNNs’ fixed 
receptive fields and the implicit loss of exact temporal 
ordering limit their ability to reason over long‐range 
temporal dependencies. 

To integrate the complementary strengths of convolutional 
and LSTM architectures while addressing their respective 
shortcomings, we introduce MIS-LSTM: Multichannel 
Image–Sequence LSTM, a hybrid CNN–LSTM architecture. 
In our day-level sleep quality and stress prediction framework, 
raw sensor streams are first divided into fixed-length, N-hour 
blocks. Within each block, we distinguish between two 
feature types: 

• Continuous features (e.g., heart rate, distance traveled) 
are real-valued and dense, capturing fine-grained 
physiological or motion signals  

• Discrete features (e.g., activity category, smartphone 
on/off status) are integer-valued and sparse, encoding 
categorical or event-driven states. 

Because these modalities exhibit different properties, 
jointly convolving them can impede learning; instead, each is 
processed through a dedicated CNN encoder optimized for its 
characteristics. The block-wise feature maps produced by 
these encoders are then concatenated and passed through a 
Convolutional Block Attention Module (CBAM) [9] to 
emphasize salient patterns across feature maps, yielding a 
refined N-hour representation. Finally, the sequence of these 
block representations serves as input to a LSTM, which 
captures global, day-level temporal dependencies. This two-
stage pipeline (i) excels at extracting localized, nonlinear 
motifs via CNNs and (ii) integrates these local features over 
longer horizons through the LSTM, leading to superior 
performance on lifelog-based time-series tasks. Our method is 
summarized in Figure 1. 

Furthermore, we propose a novel ensemble strategy that 
improves robustness by leveraging prediction confidence. 
Multiple model variants are trained, and for each sample, we 
examine the logit margin (difference between the top two or 
three class scores) as a confidence measure. For ambiguous 
cases (low margin), standard majority voting is used, whereas 
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for certain cases (high margin) where the top-performing 
model strongly disagrees with the ensemble majority, we 
selectively override the majority vote with the confident 
prediction. This adaptive voting mechanism systematically 
resolves conflicting votes by privileging the most confident 
model, effectively correcting cases where the majority might 
be mistaken. 

Experimental results show that on a public lifelog dataset 
from the 2025 challenge (predicting daily sleep quality (Q1–
Q3) and sleep health metrics (S1–S3)), we demonstrate that 
the proposed framework significantly outperforms baselines. 
In particular, it yields substantially higher Macro-F1 scores 
than: (a) an raw LSTM baseline, (b) a raw CNN and only use 
1D-CNN, (c) our model variant in which the dedicated 
discrete feature branch is omitted. We also conduct ablation 
studies to validate the benefit of multi-channel image 
encoding over alternative representations (tested on N-hour 
blocks with N in 2,4,6),  and ensemble refinement on 
performance.  

The contributions of this paper are as follows:   

1) Hybrid Sequential–Image Framework: We introduce a 
two-stage CNN– LSTM architecture for time-series prediction 
that encodes time-series into N-hour block representations for 
local pattern extraction via CNN, and integrates these 
representations across N-hour blocks with an LSTM to 
capture long-range temporal dependencies. 

2) Modality-Specific Feature Modeling: We design a 
hybrid processing pipeline that preserves feature 
characteristics by handling continuous sensor streams through 
multi-channel CNN encoding and discrete, sparse signals 
through a dedicated 1D-CNN branch, yielding superior 
performance compared to merging all features in a single 
representation. 

3) Uncertainty-Aware Logit-Refined Ensemble (UALRE): 
We propose a novel ensemble strategy that computes logit 
margins as a confidence signal, applying standard majority 
voting for low-confidence samples and selectively overriding 
the vote when a highly confident model conflicts with the 
ensemble, thereby improving robustness over traditional soft 
or hard voting schemes. 

II. RELATED WORK 

A. Lifelog-Based Sleep and Stress Prediction 
The problem of predicting sleep quality and stress from 

personal lifelogs has gained traction recently, particularly 
through competitive research challenges. In the 2024 ICTC 
“Predicting Sleep Quality and Emotional States” multi-label 
challenge [10], several teams proposed novel deep learning 
solutions for lifelog prediction. For example, Kim et al. [11] 
proposed TraM, which leverages a Time Series Transformer 
(TST) for labels with strong temporal dynamics and a 
Machine Learning Ensemble for labels requiring aggregated 
daily statistics. Similarly, Kim et al. [12] introduced a LSTM–
based framework that applies data augmentation—
specifically, time-shifting and noise injection—to generate 
multiple lifelog variations, followed by an ensemble of these 
variants to obtain the final prediction. While these methods 
demonstrate strong performance and effectively model the 
characteristics of time series data, they inherently struggle to 
capture fine-grained local temporal patterns that convolutional 
operations excel at extracting. In contrast, our approach 
employs a convolutional neural network (CNN), enabling its 

convolutional kernels to explicitly learn local temporal 
features prior to higher-level sequence modeling. 

B. Multivariate Time-Series Data as Images 
Several recent works have reformulated multivariate time 

series data as images for CNN‐based prediction. 
PixleepFlow [13] constructs each sensor feature as a 2D 
matrix—mapping time to the x-axis and feature magnitude to 
the y-axis—and then vertically stacks these matrices into a 
single‐channel (grayscale) image for sleep quality and stress 
prediction. In contrast, Oh et al. [14] assign each feature its 
own image channel, thereby leveraging the spatial inductive 
bias of CNNs more effectively than the single‐channel 
approach of PixleepFlow. Although these image‐based 
methods excel at capturing local temporal motifs, they 
inherently do not encode long‐range dependencies as 
sequential models do. Our MIS-LSTM framework bridges 
this gap by first extracting fine‐grained feature 
representations with a multichannel CNN and then integrating 
them over extended horizons using a LSTM. 

III. DATASET AND PREPROCESSING 

A. 2025 ETRI Lifelog Analytics Challenge Dataset 
We evaluate our approach on the publicly released dataset 

from the 2025 ETRI Lifelog Analytics Challenge, which 
focuses on predicting daily sleep quality and stress-related 
metrics from multimodal sensor data. The dataset consists of 
smartphone and smartwatch lifelog data collected from 
multiple participants over a continuous period (several weeks). 
Each day of data is labeled with six target metrics: three 
subjective self-reports and three objective sleep measurements. 
The data were recorded via participants’ Android smartphones 
and wearable devices with sampling intervals ranging from 1 
to 10 minutes [10]. Due to varying usage patterns, the raw data 
contains occasional missing values and noise (e.g., periods 
when a device was not worn or was charging). We describe 
the input features and output metrics below.  

The detailed structure of individual sensor data (input) items 
is summarized in Table 1. Each data item is stored as an 
individual data file and is provided along with the participant 
ID and timestamp. In the 2025 Challenge, six labels (Q1–Q3, 
S1–S3) are provided following the format of prior years, as 
detailed in Table 2. Q1–Q3 are binary labels derived from 
daily questionnaires (above vs. below each individual’s mean), 
while S1–S3 are adherence-based sleep metrics (ternary for 
total sleep time; binary for sleep efficiency and sleep onset 
latency), computed against National Sleep Foundation 
guidelines [15].  

Although the challenge prescribes 450 days for training 
and 250 days for held-out testing (with test labels withheld), 
we approximate an end-to-end evaluation by applying an 
80/20 stratified split—at the subject level—on the publicly 
available data, ensuring proportional representation of each 
participant in both subsets. All model development and 
hyperparameter tuning are performed on the training partition, 
with final performance reported on the validation partition. 
We frame the task as multi-label classification, predicting all 
six daily metrics simultaneously, and evaluate performance 
via the weighted sum of their Macro-F1 scores. 
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B. Data Preprocessing 
To prepare the raw multimodal lifelog streams for our 

MIS-LSTM framework, we employ a modality‐aware 
preprocessing pipeline that jointly addresses feature relevance, 
temporal regularization, noise filtering, and normalization. 
First, we restrict the input space to those features shown to be 
predictive in prior work [12], [13], thereby reducing 
redundancy and computational overhead (Table 3). 
Continuous, real‐valued features are resampled via linear 
interpolation onto a uniform one‐minute windows (1,440 
timesteps per day), producing dense, evenly spaced series 
suitable for convolutional encoding. In contrast, discrete, 
integer‐valued event features are inherently sparse and are 
therefore aggregated into ten‐minute windows (144 
timesteps per day). Within each window, we compute 
summary statistics (event counts, durations) to capture 
essential patterns without introducing excessive sparsity. To 
mitigate excessive impact of outlier, values that lie outside are 
clipped to valid bounds or removed entirely. Finally, each 
channel is standardized to zero mean and unit variance. The 
outcome of this pipeline is two modality‐specific matrices—
one for the high‐resolution continuous grid and one for the 
discretized event sequence—that are then processed by 
dedicated encoder branches (a multi‐channel 2D‐CNN and 
a lightweight 1D‐CNN, respectively), enabling the network 
to learn modality‐specific representations. 

 

IV. PROPOSED METHODOLOGY 
Our framework consists of two sequential stages:  

1) CNN-based sensor feature encoding, Continuous 
features—sampled at one-minute intervals—and discrete 
features—sampled at ten-minute intervals—are partitioned 
into N-hour blocks and processed by modality-specific CNN 
encoders, respectively, generating a sequence of block-level 
feature maps for each day 

2) Multichannel Image Sequence LSTM, The resulting 
sequence of block-level feature maps for both continuous and 
discrete modalities is then fed into a unified LSTM, which 

jointly attends to local patterns within each block and global 
dependencies across blocks to capture comprehensive 
temporal relationships.  

A. Continuous Feature Encoding with Multi-Channel N-
hour Block Image 
As described in Section III, we employ modality-specific 

encodings for discrete and continuous features. Continuous 
features are first segmented into N-hour blocks, each of 
which is rendered as a two-dimensional, grayscale image 
(where the x-axis denotes time and the y-axis represents the 
corresponding feature value at each time point). This process 
produces K separate images—one for each feature. However, 
since each N-hour block must represent all K feature maps 
simultaneously, we merge these K images into a single, 
unified representation.  

Conventional time-series CNNs employ a “stacked 
vertical” encoding, in which each feature’s image is 
concatenated along the vertical axis into a single unified 
image (Figure 2, left). However, we found that using such a 
single-channel (gray scale) image leads to inferior 
performance, as the CNN’s convolutional filters struggle to 
separate features effectively when they are overlaid in one 
channel. Instead, we adopt a “stacked channel” encoding, 
(Figure 2, right) where each sensor feature becomes one 
channel in a multi-channel image for the block —analogous 

Table 1: Overview of multimodal lifelog sensor streams, 
including frequency, data types, and brief descriptions of each 
feature. 

 

Table 2: Definitions and value encodings for the six daily sleep 
and stress metrics used as prediction targets 

Table 3: Overview of discrete and continuous sensor features, 
their per‐interval aggregation descriptions, and resulting 
feature counts.  

 

Fig. 1: Overview of a Multichannel Image–Sequence LSTM 
(MIS-LSTM) framework (4-hour block intervals) 
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to the R, G, and B channels of a color image. This multi-
channel method enables the network to apply feature-specific 
kernels and then integrate them, yielding superior learning of 
complex patterns. Finally, integrated N-hour block image is 
fed into our ResNet-based CNN encoder to produce an N-
hour embedding for downstream sequence modeling. 
 

B. Discrete Feature Encoding with 1D-CNN 
Unlike continuous features, discrete features indicate the 
occurrence or category of an event at specific time points 
rather than varying continuously in magnitude. Moreover, 
because discrete signals tend to be relatively sparse, their 
advantages when represented as two-dimensional images are 
limited. Encoding both continuous and discrete modalities 
with the same 2D-CNN can therefore impair overall 
performance. To address this, we employ a dedicated one-
dimensional convolutional network (1D-CNN) for discrete 
data. By leveraging this modality‐specific feature modeling, 
we obtained feature maps that faithfully preserved the intrinsic 
characteristics of each data modality (Figure 3). 

 

C. LSTM for Image-Encoded Sequences 
The embeddings produced by the CNN encoder for each 

N-hour block effectively capture local patterns within blocks 
but are limited in modeling the temporal continuity and long-
range dependencies across blocks (i.e across hours). To 
address this limitation and characterize day-level 
representation, we introduce an LSTM (Long Short-Term 
Memory) layer. We first concatenate the N-hour block 
embeddings derived separately from continuous and discrete 
features, then apply a Convolutional Block Attention Module 
(CBAM) to emphasize salient channels and spatial regions. 
The refined sequence of block embeddings is subsequently 

fed into the LSTM, enabling the model to learn both inter-
block temporal continuity and long-term dependencies. 
Finally, the LSTM’s final hidden state is passed to a 
classification layer to predict the six target metrics (Q1–Q3 
and S1–S3). Additionally, because the 2025 Lifelog 
Challenge dataset comprises only ten participants, modeling 
individual-specific characteristics is highly advantageous. 
Accordingly, we introduce a learnable subject embedding for 
each participant and concatenate it with the LSTM’s final 
hidden state, thereby enabling the network to incorporate and 
learn identity information alongside the extracted features. 
This three-stage CNN–CBAM–LSTM pipeline 
synergistically combines fine-grained intra-block feature 
extraction with inter- block sequential modeling, 
substantially improving daily sleep quality and stress 
prediction performance.  

   

D. Uncertainty-Aware Logit-Refined Ensemble (UALRE) 
Based on the predictions produced by MIS-LSTM, we 

conducted an additional ensemble phase.  Conventional 
ensembles [16] typically rely on one of two strategies: Soft 
voting – averaging either the raw logits or their soft-maxed 
probabilities across models and then taking the arg max. Hard 
voting – ignoring the logits entirely and selecting the class 
chosen by the majority of models. Because both strategies 
assign equal weight to every model output, performance can 
deteriorate when a few high-quality models are outnumbered 
by inferior ones. To address this drawback, we introduce the 
Uncertainty-Aware Logit-Refined Ensemble (UALRE): 
  

• Step 1 (confidence filtering): For the best individual 
model, we treat samples with a large logit margin (high 
inter-class gap) as “confident.” These predictions are 
accepted without modification  

Fig. 2: Illustration of two strategies for representing 
multivariate time- series images as a unified image. Left: 
Stacked-Vertical (single-channel) Right: Stacked-Channel 
(multi-channel)  

Fig. 3: Discrete feature encoding via 1D-CNN. The input is a 
matrix whose rows correspond to time steps and columns to 
discrete features. Multiple one-dimensional convolutional 
filters of varying kernel sizes are applied along the temporal 
axis; each resulting feature map is max pooled and then 
concatenated to form the unified discrete embedding. 
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• Step 2 (selective hard voting): For the remaining 
“uncertain” samples(low inter-class gap) we apply 
hard voting, but we restrict the ballot to predictions 
from other models only on the samples they deem 
confident (i.e., high inter-class gap). This ensures that 
even low-performing models contribute only when 
they are internally certain. 

By coupling confidence filtering with selective hard 
voting, UALRE preserves the strengths of the most reliable 
model while leveraging complementary information from the 
ensemble only where it is trustworthy, thereby mitigating the 
equal-weight limitation of traditional soft- and hard-voting 
schemes. 

V. EXPERIMENT 

A. Experimental Setup & Baselines 
For discrete features, we employ a one‐dimensional 

CNN in PyTorch, instantiating 16 filters for each kernel size 
in {3, 4, 5, 6} and aggregating their outputs via max-over-
time pooling. Continuous features are encoded with a 
SEResNeXt101_32×4d backbone (timm library) [17], which 
we train from scratch—eschewing ImageNet pretraining—
and modify its first convolution to accept seven input 
channels (one per continuous feature) instead of three. We 
fuse the concatenated discrete and continuous block 
embeddings (N-hour blocks) and refine them with a 
Convolutional Block Attention Module (CBAM). To capture 
global temporal dependencies across N-hour blocks, a two-
layer LSTM (model dimension = 256), also implemented in 
PyTorch. 

Optimization proceeds with AdamW (learning rate 3e-5, 
mini-batch size = 16). Because the label distribution is 
markedly skewed, we used Focal Loss instead of cross-
entropy. Training spans 200 epochs; to mitigate overfitting 
on the limited dataset, we select the checkpoint achieving the 
highest validation macro-F1 rather than the lowest validation 
loss, and report results using that model.  

To assess the efficacy of our framework, we compare 
against the following baselines: 

 
• LSTM: All features sampled at 10-minute intervals are 

fed into a standard LSTM. The hidden size and number 
of layers match those used in our proposed model. 

• 1D-CNN: All features sampled at 10-minute intervals 
are processed by a one-dimensional CNN, employing 
identical kernel sizes and filter counts in our proposed 
model and does not employ N-hour block 
segmentation or downstream sequence modeling. 

 

 

• CNN: All features sampled at 1-minute intervals are 
converted into multi-channel images and passed 
through a SEResNeXt101_32×4d backbone. This 
variant does not employ N-hour block segmentation 
nor the downstream LSTM and uses only a CNN. 

  

B. Main Result 
Table 4 summarizes the Macro-F1 scores for each target 

metric and the overall average across baselines and our MIS- 
LSTM. Our model achieves the highest average score (0.615), 
outperforming the strongest baseline (CNN). These results 
demonstrate that (i) modality-specific CNN encoders 
effective-ly capture both continuous and discrete signals, and 
(ii) the subsequent LSTM integration robustly models day-
level sequential dependencies. In particular, the largest 
improvements on Q2 and S3 suggest that our hybrid 
architecture excels at both fine-grained emotional state 
detection and sleep health assessment, validating the benefits 
of multi-channel imaging. 

Additionally, to assess the impact of our Modality-
Specific Feature Modeling for discrete data, we conduct an 
ablation study on a variant (“MIS-LSTM w/o discrete”) that 
instead treats discrete signals as additional channels in the 
same 2D-CNN used for continuous features, rather than 
routing them through a dedicated 1D-CNN branch. This 
ablation achieves an average Macro-F1 of 0.594 yet still 
outperforms the other baselines. The resulting performance 
gap confirms that processing sparse, event-driven signals via 
a 1D-CNN branch provides a meaningful boost in capturing 
discrete feature representation. 

Finally, we apply our UALRE to the model outputs from 
Tables 4 and 6. As Table 5 shows, UALRE achieves a 
Macro‐F1 of 0.647, outperforming standard soft voting 
(0.621) and hard voting (0.614). This demonstrates that 
selectively overriding low‐confidence majority decisions 

Table 4.  Macro-F1 scores for each target metric, comparing LSTM, 1D-CNN, CNN, and our MIS-LSTM. 

Table 5. Macro-F1 comparison of three ensemble strategies. 

Table 6: Macro-F1 scores for discrete feature encoding 
using multi‐channel versus stacked‐vertical 
representations at varying N-hour block lengths. 
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with high‐confidence predictions yields more robust 
performance than traditional voting schemes. 
 

C. Effect of N-hour Block Length 
To assess the effect of N-hour block length, we 

experimented with N = 2, 4, and 6 hours—yielding 12, 6, and 
4 blocks per day, respectively—and report the resulting 
Macro-F1 scores in Table 6. We also compared two 
continuous-feature encoding strategies: multi-channel versus 
stacked-vertical. Across all block lengths, the multi-channel 
approach consistently outperformed the stacked-vertical 
baseline, suggesting that treating each feature as an 
independent channel reduces inter-feature interference and 
more effectively captures complex local patterns. Examining 
block length, N=4 hours attained the highest score (0.615), 
which we attribute to a trade-off between global context and 
local motif learning: shorter blocks fragment long-range 
dependencies, whereas longer blocks dilute fine-grained 
temporal features, with 4-hour segmentation striking the 
optimal balance. 

VI. CONCLUSION 
We have presented MIS-LSTM, a novel hybrid 

architecture that couples multi-channel CNN encoders for 
both continuous and discrete lifelog features with an LSTM 
backbone to jointly capture fine-grained temporal motifs and 
long-range dependencies. By integrating a Convolutional 
Block Attention Module to fuse modality-specific 
embeddings and introducing UALRE—an uncertainty-aware 
logit-refined ensemble—we achieves the best performance 
among evaluated methods on the 2025 ETRI Lifelog 
Challenge. Our extensive ablations confirm the efficacy of 
multi-channel over stacked-vertical imaging, the optimality 
of a 4-hour segmentation, and the benefit of a dedicated 1D-
CNN branch for sparse discrete events. Beyond raw 
performance, MIS-LSTM’s block-level interpretability, 
personalized subject embeddings, and modality-specific 
design position it as a practical foundation for real-time sleep 
and stress monitoring. We anticipate that this framework will 
advance personalized digital health solutions by enabling 
early detection of anomalies and delivering actionable 
insights into daily behavior patterns and stress monitoring. 
We anticipate that this framework will advance personalized 
digital health solutions by enabling early detection of 
anomalies and delivering actionable insights into daily 
behavior patterns. 
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