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Abstract—This study comprehensively analyzed the impact 
of physiological, behavioral, digital, environmental, and social 
factors on sleep using lifelog data from smart devices. The most 
critical finding is that digital factors, such as mobile device usage, 
emerged as the strongest predictors across all sleep indicators. 
Additionally, environmental factors showed extensive influence 
on sleep quality, while social factors selectively contributed to 
sleep duration determination. Conversely, physiological and 
behavioral factors, traditionally considered important, showed 
relatively lower predictive power, demonstrating the need for 
comprehensive analysis beyond simple biological signals. In 
conclusion, this research provides important scientific evidence 
for developing personalized digital sleep health management 
systems that consider modern lifestyle patterns. 
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I. INTRODUCTION 
Sleep is essential for physical recovery and mental health, 

but sleep quality deterioration has become a significant public 
health issue in modern society. Previous studies have shown 
achievements in analyzing sleep through actigraphy or 
specific biosignals [1],[2], but these approaches have apparent 
limitations in their dependence on single-sensor data. In 
particular, there has been insufficient analysis of complex 
influences surrounding individual lives, such as 
environmental, digital, and social factors. 

This study proposes the necessity of utilizing multi-sensor 
lifelog data that encompasses the overall daily life of 
individuals. Using decision tree-based classification models, 
we aim to quantitatively identify the key determinants of how 
physiological, behavioral, digital, environmental, and social 
factors affect sleep. Additionally, we will systematically 
analyze the contribution of each factor through time window-
based feature engineering and permutation importance-based 
statistical validation. 

This approach is expected to provide important scientific 
evidence for developing personalized sleep health 
management systems and digital therapeutic platforms. 

II. METHODOLOGY 

A. Datasets  
This study utilized the multi-sensor lifelog dataset provided 

by the 2025 Human Understanding AI Paper Challenge [3]. 
The dataset consists of various sensor data collected through 
participants' Android smartphones and smartwatches, along 
with daily survey results, comprehensively reflecting 
individuals' physiological, behavioral, digital, environmental, 
and social activities. 

The collected sensor data is categorized into smartphone-
based sensors and smartwatch-based sensors, with data 
collection intervals ranging from several seconds to 10 
minutes. All timestamps are recorded in Korea Standard Time 
(KST) format as YYYY-MM-DD HH:MM:SS. 

Smartphone sensor data consists of 9 types as shown in 
Table I. 

TABLE I.  SMARTPHONE-BASED SENSOR DATA CONFIGURATION 

Sensor Feature Description 

mACStatus m_charging Charging status  
(0: not charging, 1: Charging) 

mActivity m_activity 

Activity classification  
(0: vehicle, 1: bicycle,  
2: walking, 3: still,  
4: unknown, 5: tilting,  
7: walking, 8: running) 

mAmbience m_ambience Ambient noise label and 
probability value list 

mBle m_ble Bluetooth device address, device 
class, RSSI value 

mGps m_gps Altitude, latitude, longitude, 
speed information 

mLight m_light Ambient illuminance (lx units) 

mScreenStatus m_screen_use Screen usage status 
(0: not in use, 1: in use) 

mUsageStats m_usage_stats App name and usage time 
(milliseconds) 

mWifi m_wifi Base station ID (BSSID) and 
RSSI value 

 

Smartwatch bio-signal and activity data are configured as 
shown in Table II. 

TABLE II.  SMARTWATCH-BASED SENSOR DATA CONFIGURATION 

Sensor Feature Description 

wHr heart_rate Heart rate record list 

wLight w_light Ambient illuminance (lx units) 

wPedo 

burned_calories Calories burned 

distance Distance traveled (meters) 

speed Speed (km/h units) 

step Step count 

step_frequency Steps per minute frequency 

 

Sleep-related dependent variables consist of 6 metrics. 
These are divided into two categories: objective sleep 
indicators (S1, S2, S3) and subjective sleep states (Q1, Q2, 
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Q3). Subjective sleep states were binary classified based on 
the average of individual survey responses. Objective sleep 
indicators were classified based on compliance with National 
Sleep Foundation guidelines. 

TABLE III.  SLEEP-RELATED DEPENDENT VARIABLES 

Metric Category Description Label 

Q1 Subjective 
Overall sleep quality 
perceived immediately 
upon waking 

0: below personal 
average, 
1: above personal 
average 

Q2 Subjective Physical fatigue 
before sleep 

0: high fatigue, 
1: low fatigue 

Q3 Subjective 
Stress level 
experienced before 
sleep 

0: high stress,  
1: low stress 

S1 Objective Total Sleep Time 
0: not recommended,  
1: adequate,  
2: recommended 

S2 Objective Sleep Efficiency 0: inadequate,  
1: recommended 

S3 Objective Sleep Onset Latency 0: inadequate,  
1: recommended 

 

B. Data Pre-processing 
The multi-sensor lifelog data in this study is high-

dimensional raw data containing individual daily life, 
requiring systematic preprocessing to transform it into a form 
suitable for model learning to analyze relationships with sleep. 
This process consists of four steps as shown in Figure 1. 
Fig. 1. Data Preprocessing and Variable Generation Procedure 

 
 

1) Step 1. Data structuring and parsing:The first step 
involves transforming various raw sensor data into a 
standardized tabular format suitable for analysis and ensuring 
consistency by integrating data from multiple sources. In this 
process, complex data structures recorded in list format, such 
as Bluetooth sensor data, are parsed to generate meaningful 
summary variables such as unique device counts and RSSI 
statistical values. Additionally, ambient noise data is 
converted from noise labels and probability values to the 
highest probability noise label and corresponding dB values, 
as shown in Table IV. 

TABLE IV.  AMBIENT NOISE DATA PROCESSING 
Category Data Format Description 

Before 

timestamp: 2025-07-13 
20:45:00 
m_ambience: [['Traffic', 
0.85], ['Conversation', 
0.65]] 

Noise labels and 
probability values 
recorded in list format 

After 

timestamp: 2025-07-13 
20:45:00 
m_ambience_cat: Traffic 
m_ambience_db: 75 

Parse the list to generate 
meaningful summary 
variables such as unique 
device count at that time 
point and number of 
devices with strong RSSI 
signals. 

 
Activity type (mActivity) data converts numeric codes to 
categorical variables and MET (Metabolic Equivalent of Task) 
values. Table V shows this conversion process and MET value 
mapping. 

TABLE V.  MET VALUE MAPPING BY ACTIVITY TYPE 

Category Data Format Description 

Before 
timestamp: 2025-07-13 
19:00:00 
m_activity: 7 

Activity type recorded as 
numeric code 

After 

timestamp: 2025-07-13 
19:00:00 
m_activity_cat: WALKING 
m_activity_met: 3.5 

Convert activity type to 
categorical variable and 
MET (Metabolic 
Equivalent of Task) value 

 
MET values by activity type are assigned as follows: vehicle 
movement 1.3, bicycle movement 8.0, stationary 1.2, 
unknown 3.0, walking 3.5, running 10.0. 

For GPS data, individual coordinate information is 
converted to GPS VSD (Variability of Spatial Displacement), 
a location variability indicator within time windows, to 
quantify movement patterns as shown in equation (1). 

 𝑉𝑉𝑉𝑉𝐷𝐷𝑡𝑡 = 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) × 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) × 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) (1) 

Where 𝑉𝑉𝑉𝑉𝐷𝐷𝑡𝑡  is the spatial variability index at time 𝑡𝑡 , and 
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) are the standard deviations of altitude, 
latitude, and longitude within the time window, respectively. 

Illuminance data collected separately from smartphones 
(mLight) and smartwatches (wLight) show different measured 
values due to device wearing positions and exposure 
conditions. Since there is no guarantee that participants always 
wear both devices or that sensors are positioned under 
appropriate light exposure conditions, data loss and 
measurement inconsistency issues occur. To address this, a 
single continuous illuminance stream (uLight) was generated 
by integrating data from both sources based on chronological 
order. Table VI shows this integration process. 
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TABLE VI.  INTEGRATED LIGHT DATA GENERATION EXAMPLE 

Category Data Format Description 

Before 

mLight: 150 lx 
(smartphone) 
wLight: 0 lx 
(watch in sleeve) 

Different illuminance values 
measured by each device 

After uLight: 150 lx 
Continuous illuminance stream 
generated by combining two sources 
in chronological order 

 

2) Step 2. Multi-dimensional derived variable generation 
based on time windows : Sleep quality and state are the result 
of accumulated activities, environmental exposure, and 
physiological states over several hours. Days are divided into 
evening (18:00-24:00) and dawn (00:00-06:00), and 
statistical features are extracted by segmenting into four-time 
windows: 30, 60, 120, and 180 minutes. The core of time 
window-based feature extraction is calculating the mean and 
standard deviation of each sensor data as shown in equations 
(2) and (3). 

 𝐹𝐹𝑆𝑆,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
|𝑊𝑊| ∑ 𝑆𝑆(𝑡𝑡)𝑡𝑡∈𝑊𝑊  (2) 

 𝐹𝐹𝑆𝑆,𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠 = √ 1
|𝑊𝑊|−1 ∑ (𝑆𝑆(𝑡𝑡) − 𝐹𝐹𝑆𝑆,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑡𝑡∈𝑊𝑊  (3) 

In equations (2) and (3), 𝐹𝐹𝑆𝑆,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐹𝐹𝑆𝑆,𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠 represent the mean 
and standard deviation of sensor 𝑆𝑆 in window 𝑊𝑊, respectively, 
and |𝑊𝑊| represents the number of data points in window 𝑊𝑊. 
Through this statistical summary, both central tendency and 
variability of sensor data by time interval can be captured 
simultaneously. 

3) Step 3. Integration of external data and temporal 
context variables: Weather data and temporal context 
variables are integrated to build a more comprehensive 
analysis dataset. 21 types of daily weather data provided by 
the Korea Meteorological Administration are integrated 
based on lifelog recording dates, and calendar-based 
variables are generated to reflect the basic cycle of social 
activities - weekly characteristics. 

4) Step 4. Final dataset construction and refinement: All 
derived variables are integrated into a unified analysis dataset 
using participant individual identifiers and lifelog recording 
dates as common keys. In the final refinement process, 
constant variables and variables with missing value rates 
exceeding 80% are removed. Table VII shows an example of 
the final dataset. 

TABLE VII.  CONCEPTUAL EXAMPLE OF FINAL ANALYSIS DATASET 

subject 
_id 

Lifelog 
_date 

PreSleep& 
u_light& 
20h00m& 
120min& 
median 

PreSleep& 
ambience_db& 

21h00m& 
60min& 

mean 

… Q1 

id01 2024-06-26 150.2 68.5 … 0 
id01 2024-06-27 145.8 72.1 … 0 
id01 2024-06-28 162.4 65.2 … 1 

 
Feature names are structured as time_period & sensor_type & 
start_time & window_size & statistical_function. Thus, 
PreSleep&u_light&20h00m&120min&median is the median 

illuminance from 20:00 for 120 minutes before sleep. See 
Table VIII for all engineered features. 

TABLE VIII.  SUMMARY OF ENGINEERED FEATURES 

Source Data Feature 
Name Generation Method & Aggregation 

mLight, 
wLight 

Unified 
Illuminance 

Concatenated smartphone/watch 
data; median over 30/60/120/180 
min windows. 

mAmbience Ambient 
Noise (dB) 

Sound labels converted to dB; mean 
over 30/60/120/180 min windows. 

mAmbience 
Ambient 
Noise 
(Type) 

Mode over 30/60/120/180 min 
windows. 

mActivity 
Activity 
Intensity 
(MET) 

Activity types converted to METs; 
mean over 30/60/120/180 min 
windows. 

mActivity Activity 
Type 

Mode over 30/60/120/180 min 
windows. 

wPedo Step Count / 
Distance 

Mean over 30/60/120/180 min 
windows. 

mGps Movement 
Speed 

Mean over 30/60/120/180 min 
windows. 

mGps Mobility 
Variance 

Product of Lat/Lon/Alt standard 
deviations, calculated over 
30/60/120/180 min windows. 

mScreenStatus Screen 
Usage Ratio 

Mean over 30/60/120/180 min 
windows (ON=1, OFF=0). 

mUsageStats App Usage 
(Total) 

Mean of total usage duration over 
30/60/120/180 min windows. 

mUsageStats App Usage 
(Max) 

Mean of max single-app duration 
over 30/60/120/180 min windows. 

mUsageStats App Usage 
(Count) 

Mean of unique apps used over 
30/60/120/180 min windows. 

mUsageStats App Usage 
(Type) 

Mode of app category over 
30/60/120/180 min windows. 

wHr Heart Rate Mean over 30/60/120/180 min 
windows. 

mBle BLE Device 
Count 

Mean of unique device/class counts 
over 30/60/120/180 min windows. 

mBle 
Strong 
Signal BLE 
Count 

Mean count of devices with RSSI > 
-70dBm over 30/60/120/180 min 
windows. 

mWifi WiFi AP 
Count 

Mean of unique Access Points (APs) 
over 30/60/120/180 min windows. 

mWifi 
Strong 
Signal AP 
Count 

Mean count of APs with RSSI > -
67dBm over 30/60/120/180 min 
windows. 

Meteorological 
Data 

Temperature 
(6 features) 

Daily values: Mean/Max/Min temp, 
time of max/min temp, diurnal 
range. 

Wind (7 
features) 

Daily values: Mean/Max/Gust 
speed, direction, time. 

Precipitation 
(3 features) 

Daily values: Total precipitation, 
max hourly amount, time of max. 

Insolation (3 
features) 

Daily values: Sunshine duration, 
sunshine rate, solar radiation sum. 

Humidity (2 
features) Daily values: Mean/Min humidity. 

lifelog_date Calendar 
Features 

Daily values: Day of the week, 
weekend status, holiday status. 

 

C. Research Hypothesis Development 
To verify the impact of five factors extracted from multi-

dimensional lifelog data on six sleep indicators, a total of 30 
research hypotheses were established. Each hypothesis was 
formulated as an alternative hypothesis stating "a specific 
factor makes a significant contribution to predicting the 
corresponding sleep indicator," with the null hypothesis set as 
"the corresponding factor does not affect sleep indicator 
prediction." 
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Figure 2 systematically shows the relationships between 5 
factors (F1-F5) and 6 sleep indicators (Q1-Q3, S1-S3), 
visualizing the structure of 30 research hypotheses (H1-H30). 
Fig. 2. Research Hypothesis Framework 

 
 

The factors used in the analysis are classified into five 
categories. First, there are physiological factors (F1) related to 
biosignals such as heart rate and step count, behavioral factors 
(F2) covering physical activities such as activity intensity and 
movement patterns, and digital factors (F3) representing 
digital device usage such as screen use and app usage. 
Additionally, environmental factors (F4) include physical 
environment such as illuminance, noise, and temperature, and 
social factors (F5) represent social context such as day of the 
week and holiday status. 

Hypotheses related to subjective sleep states (H1-H15) 
verify the impact of each factor on overall sleep quality (Q1), 
physical fatigue (Q2), and stress level (Q3), while hypotheses 
related to objective sleep indicators (H16-H30) aim to identify 
the impact of each factor on total sleep time (S1), sleep 
efficiency (S2), and sleep onset latency (S3). 

D. Modeling and Feature Selection 
To identify factors affecting sleep indicators and states, a 

CatBoost model based on gradient boosting was utilized. To 
select only meaningful core variables for prediction among 
numerous variables, a two-stage variable selection procedure 
was applied. 

In the first stage, an initial model is trained with all 
variables to calculate the importance score of each variable. 
Next, only variables with importance scores above average are 
selected to construct the final feature set, as expressed in 
equations (4) and (5). 

The process of selecting only features with importance 
scores above average from the entire feature set is shown in 
equation (4). 

 ℱ𝓈𝓈ℯℓℯ𝒸𝒸𝒸𝒸ℯ𝒹𝒹 = {𝑓𝑓𝑖𝑖 ∈ ℱ: 𝐼𝐼(𝑓𝑓𝑖𝑖) ≥ 𝐼𝐼}̅ (4) 

Where the average importance is calculated by equation (5). 

 𝐼𝐼 ̅ = 1
𝑛𝑛 ∑ 𝐼𝐼(𝑓𝑓𝑖𝑖)𝑛𝑛

𝑖𝑖=1  (5) 

In equations (4) and (5), ℱ is the entire feature set, ℱ𝓈𝓈ℯℓℯ𝒸𝒸𝒸𝒸ℯ𝒹𝒹  
is the selected feature set, 𝐼𝐼(𝑓𝑓𝑖𝑖) is the importance score of 
feature 𝑓𝑓𝑖𝑖, 𝐼𝐼 ̅is the average importance of all features, and 𝑛𝑛 is 
the total number of features. This procedure contributes to 
preventing model overfitting and improving computational 
efficiency. 

E. Model Training and Evaluation 
To objectively and reliably evaluate model performance 

using the finally selected core variables, a rigorous training 
and validation procedure was established. 

Repeated Stratified 2-Fold cross-validation was performed 
with 5 repetitions. This design was adopted because the total 
number of measurement days with provided labels was only 
450 days, which is relatively limited. Preliminary experiments 
showed that using more folds (3-fold or higher) resulted in 
overfitting due to excessively reduced training data size. 
Therefore, to compensate for validation instability due to the 
small number of folds, the 2-fold cross-validation was 
repeated 5 times, performing a total of 10 validations to ensure 
reliability of model performance evaluation. 
Fig. 3. Repeated Stratified 2-Fold Cross-Validation Procedure 

 
 
Figure 3 visualizes the repeated stratified 2-fold cross-
validation process applied in class imbalance situations. Data 
is split while maintaining the ratio of each class (0, 1, 2), and 
this process ensures robust model evaluation through multiple 
validation rounds. 

To address the class imbalance problem inherent in sleep 
learning data, Random OverSampling technique was applied, 
which randomly duplicates minority class data. Additionally, 
automated hyperparameter optimization based on Random 
Search was conducted to maximize model performance. The 
search process was performed to maximize Macro F1 score, 
which fairly evaluates performance between classes in data 
imbalance situations. 

First, precision and recall, which are basic performance 
indicators of the model, are defined as in equation (6). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 ,  𝑅𝑅ecall = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (6) 
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Where TP (True Positive) represents correctly predicting 
actual positives as positive, FP (False Positive) represents 
incorrectly predicting actual negatives as positive, and FN 
(False Negative) represents incorrectly predicting actual 
positives as negative. 

The F1 score, which combines precision and recall through 
harmonic mean, is calculated as in equation (7). 

 𝐹𝐹1 = 2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (7) 

The F1 score in equation (7) is an indicator of balance 
between precision and recall, reaching its maximum when 
both indicators are high. 

To evaluate overall model performance in multi-class 
classification problems, Macro F1 score was used as in 
equation (8). 

 𝐹𝐹1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
|𝐶𝐶| ∑ 𝐹𝐹1𝑐𝑐𝑐𝑐∈𝐶𝐶  (8) 

In equation (8), 𝐶𝐶 is the entire class set, |𝐶𝐶| is the total number 
of classes, and 𝐹𝐹1𝑐𝑐  is the individual F1 score for class 𝑐𝑐 . 
Macro F1 score evaluates the balanced performance of the 
entire model by equally considering the performance of each 
class. 

Hypothesis testing was performed using a statistical 
methodology combining Permutation Importance technique 
and One-sample t-test. This method is a model-agnostic 
approach that quantitatively evaluates the influence of specific 
factors by measuring changes in model prediction 
performance after randomly shuffling the values of all 
variables belonging to a specific factor. 

The importance when variables belonging to factor 𝐹𝐹 are 
permuted is calculated as in equation (9). 

 𝑃𝑃𝐼𝐼𝐹𝐹 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝐹𝐹 (9) 

In equation (9), 𝑃𝑃𝐼𝐼𝐹𝐹  is the permutation importance of 
factor 𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the model accuracy on original data, 
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝐹𝐹  is the model accuracy after permuting 
variables of factor 𝐹𝐹 . The larger this difference value, the 
more important contribution the factor makes to model 
performance. 

The specific verification procedure is as follows. First, the 
entire data is split into training set (70%) and validation set 
(30%), then baseline prediction accuracy is calculated for 
each factor variable group. Next, permutation is applied by 
simultaneously randomly shuffling the values of all variables 
belonging to a specific factor, and permutation importance is 
obtained by measuring the reduced new prediction accuracy. 
To ensure statistical reliability, this process is repeated 30 
times to obtain the distribution of permutation importance, 
and finally, One-sample t-test is used to statistically verify 
whether the average importance of each factor is significantly 
greater than 0. 

One-sample t-test for statistical significance verification is 
performed as in equation (10). 

 𝑡𝑡 = 𝑃𝑃𝐼𝐼𝐹𝐹̅̅ ̅̅ ̅−0
𝑠𝑠𝑃𝑃𝐼𝐼𝐹𝐹/√𝑛𝑛 (10) 

In equation (10), 𝑡𝑡 is the t-statistic, 𝑃𝑃𝐼𝐼𝐹𝐹 is the sample mean of 
permutation importance, 𝑠𝑠𝑃𝑃𝐼𝐼𝐹𝐹 is the sample standard deviation 
of permutation importance, and 𝑛𝑛 is the number of repetitions 
(30 times). This test allows determining whether the influence 
of the factor is statistically significant or due to chance. 

Statistical significance was determined at the 𝑝𝑝 <  0.05 
level, and 95% confidence intervals and effect sizes were 
presented together to evaluate the stability and practical 
meaning of effects. 

III. EXPERIMENTS 

A. Experimental Setup 
Multi-sensor lifelog data was utilized to systematically 

analyze the impact of physiological, behavioral, digital, 
environmental, and social factors on objective sleep indicators 
and subjective sleep states. The collected raw data was 
transformed into multi-dimensional derived variables through 
time window-based feature engineering. After removing 
constant variables and variables with missing rates exceeding 
80%, optimal feature sets were selected for each target 
through CatBoost-based variable selection. Each variable was 
classified according to its generation principle and meaning as 
follows: 

• Physiological Factors: Variables related to heart rate 
(wHr), and step count & distance (wPedo). 

• Behavioral Factors: Variables related to activity 
intensity (mActivity) and GPS movement patterns 
(mGps). 

• Digital Factors: Variables related to mobile app usage 
(mUsageStats), screen status (mScreenStatus), 
Bluetooth (ble), and Wi-Fi (wifi). 

• Environmental Factors: Variables related to 
integrated illuminance (uLight), ambient noise 
(mAmbience), and weather data (temperature, wind, 
precipitation, insolation, humidity). 

• Social Factors: Variables related to the day of the 
week (weekday), weekend status (is_weekend), and 
public holiday status (is_holiday). 

B. Model Implementation and Performance 
Prediction models for each sleep indicator were 

implemented based on the CatBoost gradient boosting 
algorithm. Random oversampling technique was applied to 
address class imbalance problems during model training, and 
model performance stability was ensured by performing 
repeated stratified 2-fold cross-validation 5 times. 
Hyperparameters were optimized through Random Search to 
maximize Macro F1 score for each prediction model. 

Model performance evaluation confirmed good predictive 
power for most sleep indicators. Particularly, the sleep onset 
latency (S3) prediction model showed the highest 
performance with an F1 score of 0.645, while subjective sleep 
indicators (Q1, Q2, Q3) and sleep efficiency (S2) models 
recorded stable performance between 0.616 and 0.631. In 
contrast, the total sleep time (S1) model, which is classified 
into 3 classes, showed relatively low performance with an F1 
score of 0.465, which is attributed to the complexity of 
classification due to ambiguity between sleep time categories 
and individual differences. 
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C. Results and Analysis 
Statistical verification results for 30 research hypotheses 

showed that null hypotheses were rejected in 20 hypotheses, 
confirming that corresponding factors have significant effects 
on sleep indicator prediction. Factor-wise analysis revealed 
that digital factors showed the most consistent and strong 
influence across all 6 sleep indicators, environmental factors 
showed significant effects in 5 indicators, and physiological 
factors showed significant effects in 4 indicators. Table IX 
presents hypothesis testing results for subjective sleep states 
and objective sleep indicators. 

TABLE IX.  HYPOTHESIS TESTING RESULTS 

Hypothesis Target Factor Significance Decision 
H1 Q1 Physiological *** Rejected 
H2 Q1 Behavioral * Rejected 
H3 Q1 Digital *** Rejected 
H4 Q1 Environmental *** Rejected 
H5 Q1 Social n.s. Not rejected 
H6 Q2 Physiological *** Rejected 
H7 Q2 Behavioral n.s. Not rejected 
H8 Q2 Digital *** Rejected 
H9 Q2 Environmental *** Rejected 
H10 Q2 Social n.s. Not rejected 
H11 Q3 Physiological n.s. Not rejected 
H12 Q3 Behavioral n.s. Not rejected 
H13 Q3 Digital *** Rejected 
H14 Q3 Environmental *** Rejected 
H15 Q3 Social n.s. Not rejected 
H16 S1 Physiological *** Rejected 
H17 S1 Behavioral *** Rejected 
H18 S1 Digital *** Rejected 
H19 S1 Environmental n.s. Not rejected 
H20 S1 Social *** Rejected 
H21 S2 Physiological n.s. Not rejected 
H22 S2 Behavioral *** Rejected 
H23 S2 Digital *** Rejected 
H24 S2 Environmental *** Rejected 
H25 S2 Social n.s. Not rejected 
H26 S3 Physiological *** Rejected 
H27 S3 Behavioral n.s. Not rejected 
H28 S3 Digital *** Rejected 
H29 S3 Environmental *** Rejected 
H30 S3 Social *** Rejected 

***p<0.001, **p<0.01, *p<0.05, n.s. = not significant 

 
Digital factors showed consistently the highest predictive 
power for all sleep indicators, particularly recording the 
highest importance of 0.129 for total sleep time (S1) (t=24.56, 
p<0.001). Environmental factors showed significant effects 
in 5 indicators, with high importance of 0.034 for sleep onset 
latency (S3) (t=14.02, p<0.001). Social factors showed 
significant effects only for total sleep time (S1) and sleep 
onset latency (S3), while physiological factors were 
statistically significant in 4 indicators but showed relatively 
low importance. Behavioral factors showed significant 
effects in only 3 indicators, recording importance of 0.070 for 
total sleep time (S1) (t=14.70, p<0.001). 

D. Discussion 
The experimental results provide important insights that 

sleep quality and state are more significantly influenced by 
modern digital lifestyles and environmental contexts rather 

than traditionally emphasized physiological indicators. 
Particularly, the consistent high influence of digital factors 
suggests that smartphone usage patterns have emerged as key 
determinants of sleep health. 

The extensive influence of environmental factors 
reconfirms the importance of sleep environment optimization, 
while the selective influence of social factors shows that 
individual sleep patterns interact complexly with social 
timetables. Conversely, the relatively low predictive power 
of physiological factors suggests the need for comprehensive 
lifestyle analysis beyond simple biosignal monitoring. 

These findings contrast with existing wearable-based sleep 
analysis that focused primarily on biosignals, demonstrating 
the superiority of comprehensive approaches integrating 
individual digital behavior patterns and environmental 
contexts. The experimental approach and statistical 
verification results provide practical guidelines for 
developing personalized sleep health management systems, 
particularly highlighting the importance of digital behavior 
monitoring and environmental sensing functions. 

IV. CONCLUSION 
 This study empirically identified that digital lifestyles and 

physical environments, rather than traditional physiological 
indicators, are the key factors determining modern sleep 
health through integrated analysis of multi-sensor lifelog data. 
Digital factors represented by smartphone usage patterns 
showed overwhelming influence in predicting all sleep 
indicators, while environmental factors such as illuminance 
and noise also had significant effects. Conversely, 
physiological factors such as heart rate and activity level 
showed relatively limited predictive power. 

These findings suggest the need for a paradigm shift in 
sleep management beyond simple bio-signal monitoring to 
comprehensively consider individual lifestyle habits and 
surrounding environments. This study presents a 
methodology for systematically analyzing multi-sensor data 
and provides guidelines for personalized sleep management 
system design and wearable device improvements. 

In conclusion, this research laid the foundation for 
developing practical solutions to solve modern sleep 
problems through comprehensive lifestyle analysis. 
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