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Abstract—This study comprehensively analyzed the impact
of physiological, behavioral, digital, environmental, and social
factors on sleep using lifelog data from smart devices. The most
critical finding is that digital factors, such as mobile device usage,
emerged as the strongest predictors across all sleep indicators.
Additionally, environmental factors showed extensive influence
on sleep quality, while social factors selectively contributed to
sleep duration determination. Conversely, physiological and
behavioral factors, traditionally considered important, showed
relatively lower predictive power, demonstrating the need for
comprehensive analysis beyond simple biological signals. In
conclusion, this research provides important scientific evidence
for developing personalized digital sleep health management
systems that consider modern lifestyle patterns.

Keywords—Lifelog, Tree-based Classification, Sleep Quality,
Sleep Indicators, Multi-sensor Data, Permutation Importance

L INTRODUCTION

Sleep is essential for physical recovery and mental health,
but sleep quality deterioration has become a significant public
health issue in modern society. Previous studies have shown
achievements in analyzing sleep through actigraphy or
specific biosignals [1],[2], but these approaches have apparent
limitations in their dependence on single-sensor data. In
particular, there has been insufficient analysis of complex
influences  surrounding individual lives, such as
environmental, digital, and social factors.

This study proposes the necessity of utilizing multi-sensor
lifelog data that encompasses the overall daily life of
individuals. Using decision tree-based classification models,
we aim to quantitatively identify the key determinants of how
physiological, behavioral, digital, environmental, and social
factors affect sleep. Additionally, we will systematically
analyze the contribution of each factor through time window-
based feature engineering and permutation importance-based
statistical validation.

This approach is expected to provide important scientific
evidence for developing personalized sleep health
management systems and digital therapeutic platforms.

II.  METHODOLOGY

A. Datasets

This study utilized the multi-sensor lifelog dataset provided
by the 2025 Human Understanding Al Paper Challenge [3].
The dataset consists of various sensor data collected through
participants' Android smartphones and smartwatches, along
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The collected sensor data is categorized into smartphone-
based sensors and smartwatch-based sensors, with data
collection intervals ranging from several seconds to 10
minutes. All timestamps are recorded in Korea Standard Time

(KST) format as YYYY-MM-DD HH:MM:SS.

Smartphone sensor data consists of 9 types as shown in

Table I.
TABLE L SMARTPHONE-BASED SENSOR DATA CONFIGURATION
Sensor Feature Description
. Charging status
mACStatus m_charging (0: not charging, 1: Charging)
Activity classification
(0: vehicle, 1: bicycle,
mActivity m_activity 2: walking, 3: still,
4: unknown, 5: tilting,
7: walking, 8: running)
. . Ambient noise label and
mAmbience m_ambience o N
- probability value list
mBle m ble Bluetooth device address, device
- class, RSSI value
mG m Altitude, latitude, longitude,
pS 8PS speed information
mLight m_light Ambient illuminance (Ix units)
mScreenStatus m_screen_use Screen usage stat}ls
- - (0: not in use, 1: in use)
App name and usage time
mUsageStats m_usage_stats (milliseconds)
. . Base station ID (BSSID) and
mwifi m_wifi RSSI value

Smartwatch bio-signal and activity data are configured as
shown in Table II.

TABLE II. SMARTWATCH-BASED SENSOR DATA CONFIGURATION
Sensor Feature Description
wHr heart_rate Heart rate record list
wLight w_light Ambient illuminance (Ix units)
burned_calories Calories burned
distance Distance traveled (meters)
wPedo speed Speed (km/h units)
step Step count
step_frequency Steps per minute frequency

with daily survey results, comprehensively reflecting
individuals' physiological, behavioral, digital, environmental,
and social activities.

Sleep-related dependent variables consist of 6 metrics.
These are divided into two categories: objective sleep
indicators (S1, S2, S3) and subjective sleep states (Q1, Q2,
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Q3). Subjective sleep states were binary classified based on
the average of individual survey responses. Objective sleep
indicators were classified based on compliance with National
Sleep Foundation guidelines.

TABLE III. SLEEP-RELATED DEPENDENT VARIABLES
Metric | Category Description Label
Overall sleep quality g;:;lo;v personal
Q1 Subjective | perceived immediately X 8¢,
. 1: above personal
upon waking
average
Lo Physical fatigue 0: high fatigue,
Q2 Subjective before sleep 1: low fatigue

Stress level

1) Step 1. Data structuring and parsing:The first step
involves transforming various raw sensor data into a
standardized tabular format suitable for analysis and ensuring
consistency by integrating data from multiple sources. In this
process, complex data structures recorded in list format, such
as Bluetooth sensor data, are parsed to generate meaningful
summary variables such as unique device counts and RSSI
statistical values. Additionally, ambient noise data is
converted from noise labels and probability values to the
highest probability noise label and corresponding dB values,
as shown in Table IV.

B. Data Pre-processing

The multi-sensor lifelog data in this study is high-
dimensional raw data containing individual daily life,
requiring systematic preprocessing to transform it into a form
suitable for model learning to analyze relationships with sleep.
This process consists of four steps as shown in Figure 1.

Fig. 1. Data Preprocessing and Variable Generation Procedure
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: hi TABLEIV.  AMBIENT NOISE DATA PROCESSING
Q3 Subjective | experienced before (]): Eihsi:z?:’
sleep ) Category Data Format Description
0: not recommended, timestamp: 2025-07-13
S1 Objective | Total Sleep Time 1: adequate, 20:45:00 Noise labels and
2: recommended Before m_ambience: [['Traffic', probability values
L . 0: inadequate, 0.85], ['Conversation', recorded in list format
S2 Objective | Sleep Efficiency 1+ recommended 0.65]]
3 Objective | Sleep Onset Latency 0: inadequate, Parse‘the list to generate
1: recommended . . meaningful summary
timestamp: 2025-07-13 X ’
20:45:00 vaqables such as unique
After T device count at that time

m_ambience_cat: Traffic

m ambience db: 75 point and number of

devices with strong RSSI
signals.

Activity type (mActivity) data converts numeric codes to
categorical variables and MET (Metabolic Equivalent of Task)
values. Table V shows this conversion process and MET value

mapping.

TABLE V. MET VALUE MAPPING BY ACTIVITY TYPE

Data Format
timestamp: 2025-07-13

Category Description

Activity type recorded as

Before 19:00:00 .
m activity: 7 numeric code
timestamp: 2025-07-13 Convert activity type to
After 19:00:00 categorical variable and

m_activity cat: WALKING
m _activity met: 3.5

MET (Metabolic
Equivalent of Task) value

MET values by activity type are assigned as follows: vehicle
movement 1.3, bicycle movement 8.0, stationary 1.2,
unknown 3.0, walking 3.5, running 10.0.

For GPS data, individual coordinate information is
converted to GPS VSD (Variability of Spatial Displacement),
a location variability indicator within time windows, to
quantify movement patterns as shown in equation (1).

VSDy = 041t () X 010¢(t) X 010 (1) (D

Where VSD;, is the spatial variability index at time ¢, and
O a1t (), 014: (1), 010, (t) are the standard deviations of altitude,
latitude, and longitude within the time window, respectively.

Illuminance data collected separately from smartphones
(mLight) and smartwatches (wLight) show different measured
values due to device wearing positions and exposure
conditions. Since there is no guarantee that participants always
wear both devices or that sensors are positioned under
appropriate light exposure conditions, data loss and
measurement inconsistency issues occur. To address this, a
single continuous illuminance stream (uLight) was generated
by integrating data from both sources based on chronological
order. Table VI shows this integration process.
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TABLE VL INTEGRATED LIGHT DATA GENERATION EXAMPLE

Category Data Format Description
mLight: 150 Ix
Before (smartphone) Different illuminance values
wLight: 0 Ix measured by each device
(watch in sleeve)
Continuous illuminance stream
After uLight: 150 Ix generated by combining two sources
in chronological order

2) Step 2. Multi-dimensional derived variable generation
based on time windows : Sleep quality and state are the result
of accumulated activities, environmental exposure, and
physiological states over several hours. Days are divided into
evening (18:00-24:00) and dawn (00:00-06:00), and
statistical features are extracted by segmenting into four-time
windows: 30, 60, 120, and 180 minutes. The core of time
window-based feature extraction is calculating the mean and
standard deviation of each sensor data as shown in equations
(2) and (3).

" = o Seew S(O) )
2
R = (o LSO -5 O

In equations (2) and (3), F{i¢®" and F§4} represent the mean
and standard deviation of sensor S in window W, respectively,
and |W| represents the number of data points in window W.
Through this statistical summary, both central tendency and
variability of sensor data by time interval can be captured
simultaneously.

3) Step 3. Integration of external data and temporal
context variables: Weather data and temporal context
variables are integrated to build a more comprehensive
analysis dataset. 21 types of daily weather data provided by
the Korea Meteorological Administration are integrated
based on lifelog recording dates, and calendar-based
variables are generated to reflect the basic cycle of social
activities - weekly characteristics.

4) Step 4. Final dataset construction and refinement: All
derived variables are integrated into a unified analysis dataset
using participant individual identifiers and lifelog recording
dates as common keys. In the final refinement process,
constant variables and variables with missing value rates
exceeding 80% are removed. Table VII shows an example of
the final dataset.

TABLE VII.  CONCEPTUAL EXAMPLE OF FINAL ANALYSIS DATASET
PreSleep& PreSleep&
. . u_light& ambience_db&
subject | LI®IOZ | 20h00m& | 21h00m& | ...| Q1
-t ~date 120min& 60min&
median mean
id01 2024-06-26 150.2 68.5 0
id01 2024-06-27 145.8 72.1 .| 0
id01 2024-06-28 162.4 65.2 !

Feature names are structured as time_period & sensor_type &
start time & window size & statistical function. Thus,
PreSleep&u_light&20h00m& 120min&median is the median
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illuminance from 20:00 for 120 minutes before sleep. See
Table VIII for all engineered features.

TABLE VIIIL SUMMARY OF ENGINEERED FEATURES
Source Data Feature Generation Method & Aggregation
Name
. . Concatenated smartphone/watch
mL} ght, Umﬁ‘.:d data; median over 30/60/120/180
wLight Illuminance L0
min windows.
mAmbience Ambient Sound labels converted to dB; mean
Noise (dB) over 30/60/120/180 min windows.
. Ambient 1\t de over 30/60/120/180 min
mAmbience Noise .
windows.
(Type)
Activity Activity types converted to METs;
mActivity Intensity mean over 30/60/120/180 min
(MET) windows.
. Activity Mode over 30/60/120/180 min
mActivity .
Type windows.
Step Count / | Mean over 30/60/120/180 min
wPedo . .
Distance windows.
Movement Mean over 30/60/120/180 min
mGps .
Speed windows.
. Product of Lat/Lon/Alt standard
Mobility .
mGps Variance deviations, calculated over
30/60/120/180 min windows.
mScreenStatus Screen Mean over 30/60/120/180 min
Usage Ratio | windows (ON=1, OFF=0).
App Usage Mean of total usage duration over
mUsageStats | (1) 30/60/120/180 min windows.
App Usage Mean of max single-app duration
mUsageStats (Max) over 30/60/120/180 min windows.
App Usage Mean of unique apps used over
mUsageStats | (ount) 30/60/120/180 min windows.
App Usage Mode of app category over
mUsageStats | (7o) 30/60/120/180 min windows.
wHr Heart Rate Mean over 30/60/120/180 min
windows.
mBle BLE Device | Mean of unique device/class counts
Count over 30/60/120/180 min windows.
Strong Mean count of devices with RSSI >
mBle Signal BLE | -70dBm over 30/60/120/180 min
Count windows.
mWifi WiFi AP Mean of unique Access Points (APs)
Count over 30/60/120/180 min windows.
Strong Mean count of APs with RSSI > -
mWifi Signal AP 67dBm over 30/60/120/180 min
Count windows.
Daily values: Mean/Max/Min temp,
Temperature | .. . .
time of max/min temp, diurnal
(6 features)
range.
Wind (7 Daily values: Mean/Max/Gust
. features) speed, direction, time.
Meteorological o - - —
Data Precipitation | Daily values: Total precipitation,
(3 features) max hourly amount, time of max.
Insolation (3 | Daily values: Sunshine duration,
features) sunshine rate, solar radiation sum.
Humidity (2 . . . e
features) Daily values: Mean/Min humidity.
lifeloe date Calendar Daily values: Day of the week,
g Features weekend status, holiday status.

C. Research Hypothesis Development

To verify the impact of five factors extracted from multi-
dimensional lifelog data on six sleep indicators, a total of 30
research hypotheses were established. Each hypothesis was
formulated as an alternative hypothesis stating "a specific
factor makes a significant contribution to predicting the
corresponding sleep indicator," with the null hypothesis set as
"the corresponding factor does not affect sleep indicator
prediction."



Figure 2 systematically shows the relationships between 5
factors (F1-F5) and 6 sleep indicators (Q1-Q3, S1-S3),
visualizing the structure of 30 research hypotheses (H1-H30).

Fig. 2. Research Hypothesis Framework
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The factors used in the analysis are classified into five
categories. First, there are physiological factors (F1) related to
biosignals such as heart rate and step count, behavioral factors
(F2) covering physical activities such as activity intensity and
movement patterns, and digital factors (F3) representing
digital device usage such as screen use and app usage.
Additionally, environmental factors (F4) include physical
environment such as illuminance, noise, and temperature, and
social factors (F5) represent social context such as day of the
week and holiday status.

Hypotheses related to subjective sleep states (HI1-H15)
verify the impact of each factor on overall sleep quality (Q1),
physical fatigue (Q2), and stress level (Q3), while hypotheses
related to objective sleep indicators (H16-H30) aim to identify
the impact of each factor on total sleep time (S1), sleep
efficiency (S2), and sleep onset latency (S3).

D. Modeling and Feature Selection

To identify factors affecting sleep indicators and states, a
CatBoost model based on gradient boosting was utilized. To
select only meaningful core variables for prediction among
numerous variables, a two-stage variable selection procedure
was applied.

In the first stage, an initial model is trained with all
variables to calculate the importance score of each variable.
Next, only variables with importance scores above average are
selected to construct the final feature set, as expressed in
equations (4) and (5).

The process of selecting only features with importance
scores above average from the entire feature set is shown in
equation (4).

Tae#ected = {fl EF: I(ft) = I_} (4)

Where the average importance is calculated by equation (5).
= 1
T=13m,1(f) ®)

In equations (4) and (5), F is the entire feature set, Fyopocteq
is the selected feature set, I(f;) is the importance score of
feature f;, I is the average importance of all features, and n is
the total number of features. This procedure contributes to
preventing model overfitting and improving computational
efficiency.

E. Model Training and Evaluation

To objectively and reliably evaluate model performance
using the finally selected core variables, a rigorous training
and validation procedure was established.

Repeated Stratified 2-Fold cross-validation was performed
with 5 repetitions. This design was adopted because the total
number of measurement days with provided labels was only
450 days, which is relatively limited. Preliminary experiments
showed that using more folds (3-fold or higher) resulted in
overfitting due to excessively reduced training data size.
Therefore, to compensate for validation instability due to the
small number of folds, the 2-fold cross-validation was
repeated 5 times, performing a total of 10 validations to ensure
reliability of model performance evaluation.

Fig. 3. Repeated Stratified 2-Fold Cross-Validation Procedure
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Figure 3 visualizes the repeated stratified 2-fold cross-
validation process applied in class imbalance situations. Data
is split while maintaining the ratio of each class (0, 1, 2), and
this process ensures robust model evaluation through multiple
validation rounds.

To address the class imbalance problem inherent in sleep
learning data, Random OverSampling technique was applied,
which randomly duplicates minority class data. Additionally,
automated hyperparameter optimization based on Random
Search was conducted to maximize model performance. The
search process was performed to maximize Macro F1 score,
which fairly evaluates performance between classes in data
imbalance situations.

First, precision and recall, which are basic performance
indicators of the model, are defined as in equation (6).

TP
TP+FN

Precision = ,  Recall =

(6)

TP+FP
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Where TP (True Positive) represents correctly predicting
actual positives as positive, FP (False Positive) represents
incorrectly predicting actual negatives as positive, and FN
(False Negative) represents incorrectly predicting actual
positives as negative.

The F1 score, which combines precision and recall through
harmonic mean, is calculated as in equation (7).

Precision-Recall

F,=2 7

Precision+Recall
The F1 score in equation (7) is an indicator of balance
between precision and recall, reaching its maximum when
both indicators are high.

To evaluate overall model performance in multi-class
classification problems, Macro F1 score was used as in
equation (8).

1
Fi macro = EZCEC Flc (3

In equation (8), C is the entire class set, |C| is the total number
of classes, and F1, is the individual F1 score for class c.
Macro F1 score evaluates the balanced performance of the
entire model by equally considering the performance of each
class.

Hypothesis testing was performed using a statistical
methodology combining Permutation Importance technique
and One-sample t-test. This method is a model-agnostic
approach that quantitatively evaluates the influence of specific
factors by measuring changes in model prediction
performance after randomly shuffling the values of all
variables belonging to a specific factor.

The importance when variables belonging to factor F are
permuted is calculated as in equation (9).

PIF = SCOT'ebaseline - Scorepermuted_F (9)

In equation (9), Pl is the permutation importance of
factor F, Scorepqserine 18 the model accuracy on original data,
and Scorepermuteay 1 the model accuracy after permuting
variables of factor F. The larger this difference value, the
more important contribution the factor makes to model
performance.

The specific verification procedure is as follows. First, the
entire data is split into training set (70%) and validation set
(30%), then baseline prediction accuracy is calculated for
each factor variable group. Next, permutation is applied by
simultaneously randomly shuffling the values of all variables
belonging to a specific factor, and permutation importance is
obtained by measuring the reduced new prediction accuracy.
To ensure statistical reliability, this process is repeated 30
times to obtain the distribution of permutation importance,
and finally, One-sample t-test is used to statistically verify
whether the average importance of each factor is significantly
greater than 0.

One-sample t-test for statistical significance verification is
performed as in equation (10).

_ PIF-o0
spip/NM

(10)

In equation (10), t is the t-statistic, P is the sample mean of
permutation importance, Spy,, is the sample standard deviation
of permutation importance, and n is the number of repetitions
(30 times). This test allows determining whether the influence
of the factor is statistically significant or due to chance.

Statistical significance was determined at the p < 0.05
level, and 95% confidence intervals and effect sizes were
presented together to evaluate the stability and practical
meaning of effects.

III. EXPERIMENTS

A. Experimental Setup

Multi-sensor lifelog data was utilized to systematically
analyze the impact of physiological, behavioral, digital,
environmental, and social factors on objective sleep indicators
and subjective sleep states. The collected raw data was
transformed into multi-dimensional derived variables through
time window-based feature engineering. After removing
constant variables and variables with missing rates exceeding
80%, optimal feature sets were selected for each target
through CatBoost-based variable selection. Each variable was
classified according to its generation principle and meaning as
follows:

e Physiological Factors: Variables related to heart rate
(wHr), and step count & distance (wPedo).

e Behavioral Factors: Variables related to activity
intensity (mActivity) and GPS movement patterns
(mGps).

o Digital Factors: Variables related to mobile app usage
(mUsageStats), screen status (mScreenStatus),
Bluetooth (ble), and Wi-Fi (wifi).

e Environmental Factors: Variables related to
integrated illuminance (uLight), ambient noise
(mAmbience), and weather data (temperature, wind,
precipitation, insolation, humidity).

e Social Factors: Variables related to the day of the
week (weekday), weekend status (is_weekend), and
public holiday status (is_holiday).

B. Model Implementation and Performance

Prediction models for each sleep indicator were
implemented based on the CatBoost gradient boosting
algorithm. Random oversampling technique was applied to
address class imbalance problems during model training, and
model performance stability was ensured by performing
repeated stratified 2-fold cross-validation 5 times.
Hyperparameters were optimized through Random Search to
maximize Macro F1 score for each prediction model.

Model performance evaluation confirmed good predictive
power for most sleep indicators. Particularly, the sleep onset
latency (S3) prediction model showed the highest
performance with an F1 score of 0.645, while subjective sleep
indicators (Q1, Q2, Q3) and sleep efficiency (S2) models
recorded stable performance between 0.616 and 0.631. In
contrast, the total sleep time (S1) model, which is classified
into 3 classes, showed relatively low performance with an F1
score of 0.465, which is attributed to the complexity of
classification due to ambiguity between sleep time categories
and individual differences.
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C. Results and Analysis

Statistical verification results for 30 research hypotheses
showed that null hypotheses were rejected in 20 hypotheses,
confirming that corresponding factors have significant effects
on sleep indicator prediction. Factor-wise analysis revealed
that digital factors showed the most consistent and strong
influence across all 6 sleep indicators, environmental factors
showed significant effects in 5 indicators, and physiological
factors showed significant effects in 4 indicators. Table 1X
presents hypothesis testing results for subjective sleep states
and objective sleep indicators.

TABLE IX. HYPOTHESIS TESTING RESULTS
Hypothesis | Target | Factor Significance | Decision
Hl Ql Physiological ok Rejected
H2 Q1 Behavioral * Rejected
H3 Q1 Digital HHE Rejected
H4 Ql Environmental | *** Rejected
H5 Ql Social n.s. Not rejected
H6 Q2 Physiological FEE Rejected
H7 Q2 Behavioral n.s. Not rejected
H8 Q2 Digital HHE Rejected
H9 Q2 Environmental | *** Rejected
H10 Q2 Social n.s. Not rejected
HI11 Q3 Physiological n.s. Not rejected
HI12 Q3 Behavioral n.s. Not rejected
H13 Q3 Digital HAk Rejected
H14 Q3 Environmental | *** Rejected
H15 Q3 Social n.s. Not rejected
H16 S1 Physiological HHE Rejected
H17 S1 Behavioral FEE Rejected
H18 S1 Digital ok Rejected
H19 S1 Environmental | n.s. Not rejected
H20 S1 Social ok Rejected
H21 S2 Physiological | n.s. Not rejected
H22 S2 Behavioral HAk Rejected
H23 S2 Digital HHE Rejected
H24 S2 Environmental | *** Rejected
H25 S2 Social n.s. Not rejected
H26 S3 Physiological FEE Rejected
H27 S3 Behavioral n.s. Not rejected
H28 S3 Digital HEE Rejected
H29 S3 Environmental | *** Rejected
H30 S3 Social el Rejected

***p<0.001, **p<0.01, *p<0.05, n.s. = not significant

Digital factors showed consistently the highest predictive
power for all sleep indicators, particularly recording the
highest importance of 0.129 for total sleep time (S1) (t=24.56,
p<0.001). Environmental factors showed significant effects
in 5 indicators, with high importance of 0.034 for sleep onset
latency (S3) (t=14.02, p<0.001). Social factors showed
significant effects only for total sleep time (S1) and sleep
onset latency (S3), while physiological factors were
statistically significant in 4 indicators but showed relatively
low importance. Behavioral factors showed significant
effects in only 3 indicators, recording importance of 0.070 for
total sleep time (S1) (t=14.70, p<0.001).

D. Discussion

The experimental results provide important insights that
sleep quality and state are more significantly influenced by
modern digital lifestyles and environmental contexts rather

than traditionally emphasized physiological indicators.
Particularly, the consistent high influence of digital factors
suggests that smartphone usage patterns have emerged as key
determinants of sleep health.

The extensive influence of environmental factors
reconfirms the importance of sleep environment optimization,
while the selective influence of social factors shows that
individual sleep patterns interact complexly with social
timetables. Conversely, the relatively low predictive power
of physiological factors suggests the need for comprehensive
lifestyle analysis beyond simple biosignal monitoring.

These findings contrast with existing wearable-based sleep
analysis that focused primarily on biosignals, demonstrating
the superiority of comprehensive approaches integrating
individual digital behavior patterns and environmental
contexts. The experimental approach and statistical
verification results provide practical guidelines for
developing personalized sleep health management systems,
particularly highlighting the importance of digital behavior
monitoring and environmental sensing functions.

IV. CONCLUSION

This study empirically identified that digital lifestyles and
physical environments, rather than traditional physiological
indicators, are the key factors determining modern sleep
health through integrated analysis of multi-sensor lifelog data.
Digital factors represented by smartphone usage patterns
showed overwhelming influence in predicting all sleep
indicators, while environmental factors such as illuminance
and noise also had significant effects. Conversely,
physiological factors such as heart rate and activity level
showed relatively limited predictive power.

These findings suggest the need for a paradigm shift in
sleep management beyond simple bio-signal monitoring to
comprehensively consider individual lifestyle habits and
surrounding environments. This study presents a
methodology for systematically analyzing multi-sensor data
and provides guidelines for personalized sleep management
system design and wearable device improvements.

In conclusion, this research laid the foundation for
developing practical solutions to solve modern sleep
problems through comprehensive lifestyle analysis.
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