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Abstract—Autonomous beam alignment presents a fundamen-
tal challenge for emerging drone-based aerial networks. While
integrated sensing and communication offers a solution using
heterogeneous onboard sensors, its development requires datasets
that integrate multi-modal sensor information, such as the
inertial measurement unit (IMU) and camera. To address this
data requirement, we develop a multi-sensor simulator based on
the Unity 6 engine. The simulator produces camera images, IMU-
characterized attitude data, and ground truth vectors. A case
study of autonomous beam search is presented to demonstrate a
practical application of the generated data.

I. INTRODUCTION

Aerial networks employing drones are emerging as a key
technology in next-generation mobile communications, where
maintaining a stable link through continuous beam alignment
remains a fundamental challenge [1]. Integrated sensing and
communication (ISAC) can assist autonomous beam search us-
ing onboard sensors such as cameras and inertial measurement
units (IMUs), without requiring additional radio resources
[2]. However, mathematical modeling of such heterogeneous
sensors is still immature, which highlights the need for reliable
datasets to support algorithm development.

One approach is to design simulator platforms for sensor-
aided communication that can adapt to diverse scenarios. Most
existing simulators, however, focus on autonomous vehicles
and often neglect detailed three-axis rotational dynamics rep-
resented by Euler angles (Pitch, Yaw, Roll) or by quaternions,
which are essential in drone applications [3]. Another approach
is to obtain datasets from experimental setups [4]. However,
these datasets often have coarse resolution, such as quantized
beam directions on discrete grids, due to the high cost of
experiments.

To address these challenges, we develop a new simulator for
aerial sensor-aided communication. The simulator generates
datasets that incorporate monocular camera images, IMU-
based attitude, and ground-truth locations. As a case study, we
demonstrate its use for autonomous beam search with multiple
sensors mounted on a drone.

¥ Corresponding author.

524

II. SIMULATOR DESIGN FOR SENSOR-AIDED
COMMUNICATION

This section introduces the multi-modal simulator frame-
work and demonstrates its application to beam search.
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Fig. 1. Block diagram of dataset generation

A. Framework for Camera-IMU Dataset Generation

The proposed simulator consists of Unity’s integrated
physics engine, raw data acquisition, and data pre-processing,
as shown in Fig. 1.

The physics engine models object interactions including
physical disturbances, continuously updating the drone’s at-
titude and velocity to generate a dynamic trajectory. The raw
data acquisition block collects images and attitude information
at discrete sampling intervals (e.g., 300 ms) from the camera
and IMU. The camera’s attitude is assumed to be known, while
IMU errors are incorporated by adding zero-mean Gaussian
noise to each axis, with statistical parameters derived from
prior studies [5], [6]. The data pre-processing block computes
YOLO bounding box coordinates and rotation matrices, which
serve as inputs for subsequent beam search.

B. Application to Beam Search

As a case study, the developed simulator is applied to
the beam search problem with two benchmark algorithms: a
geometric-based method and its refined version using a fully
connected neural network (FNN).

The geometric-based approach estimates the drone-to-base
station (BS) direction vector from YOLO detections and
rotation matrices according to

V= RdRcvyolm (1)
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Fig. 2. Beamforming efficiency with different FNN inputs.

where v denotes the estimated direction vector in the global
coordinate system; R, and R, are rotation matrices from the
drone and camera attitudes [7]; and vy, is the unit direction
vector to the BS in the camera’s local coordinate system,
obtained from the YOLO bounding box coordinates.

Since Rg and vy, are affected by noisy attitude data and
estimation error [8], we also consider a refined approach that
leverages an FNN [9]. Two input configurations are evaluated:
(i) a 5D input combining v with raw YOLO bounding box
coordinates and (i¢) a 6D input combining v with Vyoo.

III. NUMERICAL RESULTS

The proposed framework is evaluated by comparing a base-
line geometric estimation against the FNN-based refinement
model, with both its 5D and 6D input configurations. All
FNNs have a depth of 4 layers. Performance is measured
by the beamforming efficiency versus the number of drone’s
uniform planar array (UPA) antennas, with the beamforming
efficiency representing the achieved gain as a percentage for
the maximum gain obtained using the true direction vector.

Fig. 2 compares the geometric baseline against two FNN-
based refinement models using a width of 128. Both FNNs
significantly outperform the baseline and demonstrate the
ability to correct errors inherent in Rg and vy1,. Furthermore,
the higher performance of the 6D input configuration over the
5D input indicates that the pre-processed direction vector vylo
is a more effective refinement feature than raw bounding box
coordinates.

Fig. 3 shows the impact of FNN width using the 6D
input configuration. Performance improves when increasing
the model width from 64 to 128. However, a further increase in
width to 256 yields only marginal improvement. This suggests
a width of 128 offers a sufficient model capacity under our
experimental conditions.

IV. CONCLUSIONS

In this paper, we developed a simulator for aerial sensor-
aided communication systems. Its effectiveness was demon-
strated through sensor-aided beam search, evaluated against
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Fig. 3. Beamforming efficiency with varying FNN model widths.

two benchmark algorithms. Future work will enhance the
simulator to support a wider range of scenarios and operating
conditions.
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