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Abstract—Time-series forecasting is an important issue in the
power plant industry, where its application can vary from pre-
emptive maintenance to demand prediction to emission control.
However, due to the lack of quality data and environmental
conditions of different facilities, such forecasting has generally
been limited to elementary statistical analysis. The recent de-
velopment of the time-series foundation model (TSFM) shows
promising zero-shot forecasting quality, enabling a plug-and-play
AI model that can be utilized by facilities with a minimal amount
of recorded data. We evaluated some of the leading TSFMs in the
AI industry to forecast power plant emission data. We compare
their zero-shot forecasting accuracy as well as its applicability
for anomaly detection and fine-tuning.

Index Terms—Time-series forecasting, Time-series foundation
model, Large scale model, Probabilistic forecasting, Power plant
emissions

I. INTRODUCTION

With the ongoing global warming issue and the development
of artificial intelligence technology, the need for an intelligent
energy system has become more important than ever. Many
relevant technologies rely on the time-series forecasting of
various components; for example, energy demand forecasting
is essential for optimal energy distribution [1], renewable
energy production forecasting is needed for energy storage
system scheduling [2], and the power plant control system
can be improved by predicting each sensor data the system
collects [3].

However, there are several problems in developing a pre-
diction model. First, many companies that seek to adopt
such a system often lack sufficient data to train a relevant
model. Moreover, each time-series we want to predict can be
highly domain-specific, so a model that can predict one time-
series domain can be an overfit to another domain. Traditional
methods such as ARIMA and SARIMA can be implemented
without an abundant amount of data, but they have limitations
on prediction accuracy and struggle to capture the correlation
between different streams of data.

Recently, there have been attempts to address this issue
using large model-based approaches. Similarly to the now-
popular large language models (LLMs), Nixtla introduced
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TimeGPT [4], the first large model specifically designed to
handle time-series data. Since then, many TSFMs have been
introduced, including TimesFM [5] by Google, Chronos [6]
by Amazon, and Moirai [7] by Salesforce.

Each TSFM are trained with massive amount of data,
varying from nearly 100B to 300B. Because they are trained
with such a wide variety of time-series data, they generally
tend to have a good zero-shot forecasting capability. Like
LLMs, TSFM can be fine-tuned to be specialized to the
specific needs, while requiring far less amount of domain-
specific data than to develop a model from scratch. Moreover,
because its task is restricted to time-series data handling, the
size of each model is much smaller than that of an LLM; some
of the smallest TSFM consists of less than 10M parameters,
and even the largest model has less than 1B parameters.

Time-series is similar to language processing in the sense
that it handles a sequence of numerical tokens, so all TSFMs
are based on the transformer structure. The major structural
difference between different TSFMs is whether the structure is
constructed with an encoder, decoder, or both. However, later
models were all implemented with a decoder structure, fol-
lowing the current trend in the development of LLM models.

In addition, some later models are implemented with the
Mixture-of-Experts(MoE) structure [8], which allows a larger
and more accurate model while maintaining a similar inference
time. Unfortunately, because of their structural complexity,
MoE-based models generally do not support the software
development kit for fine-tuning.

One of the key features of TSFMs is their ability to generate
sampled forecasts by predicting the parameters of a mix-
ture distribution, enabling probability analysis of the sampled
output. Probabilistic forecasting is particularly important for
analysis related to the energy system, as anomalies in the
system can often lead to safety issues. For example, if the
range between the prediction quantiles is large, it would
indicate that the prediction model is not very confident about
the prediction it provides. And if the monitored value has a
safety boundary, checking whether the high/low quantiles of
the prediction break the safety borderline can serve as a trigger
alert, even if the mean value of the prediction is within the
boundary. Moreover, if data recorded at a certain time tn is
outside the quantile range of prediction based on sequential
data collected up to time tn−1, such data could be treated as
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anomalies outside of the distribution (OOD).

II. POWER PLANT EMISSION DATA

To assess the applicability of TSFM on actual energy system
data, we use Clean Air Markets Program Data (CAMPD) pro-
vided by the United States Environmental Protection Agency
[9]. CAMPD provides emission data for the main pollutants
for each of the enlisted power plants in the United States.

We collect the two-month-long hourly emission data of the
Barry power plant in Alabama, recorded during November
and December 2024. We predict the hourly emissions of
CO2, SO2 and NOx for this plant.

It should be noted that TSFMs provide covariate support;
for example, if the gross load of the power plant is scheduled
beforehand, it can serve as a dynamic numerical covariate
component to assist in prediction, and the weekday indicator
can also serve as a dynamic categorical covariate.

III. TSFM COMPARISON

For each model listed in Table I, we predict one month of
emission data from the given power plant by accumulating
predictions of 6 hour data each, each prediction being based
on the recorded data of the preceding 168 hours (1 week).
Each prediction predicts the three categories of emission
gases simultaneously. Specifically, the models being used are
TimesFM 2.0 model (500M), Chronos base model (200M),
Chronos-Bolt base model (205M), Moirai base model (91.4M)
and Moirai-MoE base model (935M). We make the prediction
for the 1-hour and 6-hour horizon. Each prediction will
generate 100 sample scenarios, and we extract the mean, 0.1
quantile, 0.5 quantile (median) and 0.9 quantile. The prediction
mean will be compared with the ground truth data to compute
the mean absolute percentage error (MAPE).

Figures 1 to 5 present a comparison between the prediction
of the 6 hour horizon of each TSFM and the ground-truth
emission data for December 2024. Figure 6 displays the com-
parison of MAPE between models and emission gases. Each
model exhibits similar MAPE for SO2 and CO2 emissions,
as they follow similar patterns but on different scales. Due
to its abrupt spike behavior, all models struggle to accurately
predict NOx emissions.

We also record the number of ground truth data that would
be counted as anomalies for each TSFM. If a given ground-
truth record is greater than the 0.9 quantile prediction value,
it will be counted as a high anomaly, and if it is less than
the 0.1 quantile prediction value, it will be counted as a low
anomaly. Note that depending on the characteristic of the
data we predict, the quantile criterion can be asymmetric; for
example, emission data may have to be more sensitive to high
anomalies and less sensitive to low anomalies.

Figure 7 compares the number of anomaly counts based on
each TSFM. Compared to other models, the original Chronos
seems to be over-confident about its prediction, as we get
significantly more anomaly marks based on its prediction.

Finally, we measure the execution time of each prediction.
This is particularly important if the domain of interest demands

Fig. 1. Comparison of 6-hour horizon TimesFM forecast and ground truth
emission data

Fig. 2. Comparison of 6-hour horizon Chronos forecast and ground truth
emission data

a stream of data frequently. Our machine specification is Intel
i9-14900KS CPU, 128GB RAM, NVIDIA RTX 4090 24GB
GPU with CUDA 12.6 and Windows 11.

Table II shows the overall execution time for predicting 1-
month emission data, of which the prediction window is 6-
hours each. For TimesFM and Chronos-Bolt models, we did
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TABLE I
PROPERTY COMPARISONS OF TSFM

Model Training Dataset Size Model Size Model Structure Fine-tune Open Source

TimeGPT (Nixtla) 100B Unknown Encoder-Decoder Yes No

TimesFM (Google) 100B+ 200/500M Decoder Yes Yes

Chronos (Amazon) 84B 8/20/46/200/710M Encoder-Decoder Yes Yes

Chronos-Bolt (Amazon) 84B 9/21/48/205M Encoder-Decoder No Yes

Moirai (Salesforce) 231B 13.8/91.4/311M Encoder Yes Yes

Moirai-MoE (Salesforce) 231B 117/935M Decoder No Yes

Fig. 3. Comparison of 6-hour horizon Chronos-Bolt forecast and ground truth
emission data

another experiment without using the GPU.

IV. ANALYSIS AND CONCLUSION

We compared the zero-shot prediction capability of hourly
power plant emission data for public TSFMs. For more pre-
dictable SO2 and CO2 emissions, each model showed similar
MAPE, and the models of the Moirai family showed worse
precision for less predictable NOx emission.

The Chronos-Bolt model shows the fastest prediction speed
while maintaining accuracy and anomaly detection ability
similar to other models. However, this particular model does
not provide an official fine-tuning SDK, so its applicability
may be limited to zero-shot predictions. Also, if the prediction
model runs on a GPU-less system, then the TimesFM model
could be a better option.

Fig. 4. Comparison of 6-hour horizon Moirai forecast and ground truth
emission data

If we want to fine-tune a model to the domain of our interest,
Moirai and TimesFM would be preferred; however, it is worth
noting that Moirai has more smaller model variants that would
require less computation load for fine-tuning.

In the future, we plan to evaluate the trade-offs between var-
ious prediction windows and context settings, and fine-tuning
results to see the improvement over zero-shot forecasting. We
also look forward to extending the application of TSFM to
other power plant control data, such as turbine RPM and steam
pressure.
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Fig. 5. Comparison of 6-hour horizon Moirai-MoE forecast and ground truth
emission data

Fig. 6. MAPE comparison of each TSFM
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