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Abstract—Federated learning (FL) offers promising solutions
for energy load forecasting in smart grids while preserving data
privacy. However, most existing studies assume bidirectional Long
Short-Term Memory (BiLSTM) networks outperform LSTM
models, an assumption derived from centralized learning sce-
narios. This paper challenges this conventional wisdom by
evaluating both architectures under extreme data heterogeneity
conditions in federated environments. We propose an adaptive
Dirichlet partitioning approach integrated with a novel Proof-
of-Authority-and-Association (PoA?) consensus mechanism for
real-time energy forecasting. Our experimental evaluation using
hourly energy consumption data across 10 federated rounds with
5 clients show that LSTM consistently outperforms BiLSTM
under high data heterogeneity (o = 0.1), achieving superior R?
scores (0.92 versus 0.81), lower loss values (0.08 versus 0.19),
and reduced mean absolute error (500 versus 780). The PoA2-
based PureChain framework maintains low latency (166ms) while
supporting high throughput (147 predictions/minute) with 97 %
security score. These findings demonstrate that architectural
simplicity in LSTM provides better generalization capabilities
under extreme non-identical data (non-IID) conditions, while
our adaptive partitioning method stabilizes training performance.
The integrated blockchain solution ensures secure, decentralized
coordination suitable for real-time Smart grid applications,
offering both theoretical insights and practical implications for
federated energy forecasting systems

Index Terms—Blockchain, Energy Forecasting, Federated
learning, LSTM, Dirichlet Partitioning, PoA?, PureChain.

I. INTRODUCTION

Smart grids generate massive amounts of data from dis-
tributed sources, such as smart meters and energy resources.
Load forecasting is essential for grid stability [1], but tradi-
tional centralized approaches cannot handle this distributed
data while preserving privacy. Federated learning (FL) offers
a solution by enabling collaborative model training without
sharing raw data [2]. Recent studies have applied FL to
energy forecasting, yielding promising results [3], [4].
However, most research assumes that bidirectional Long Short-
term memory (BiLSTM) architectures are superior to Long
Short-term memory (LSTM) networks for time series forecast-
ing [5], [6]. This assumption comes from centralized learning
studies where BiLSTM’s bidirectional processing typically
improves accuracy [7].

Few studies have examined whether this holds in FL envi-
ronments with highly heterogeneous data. Data heterogeneity
is a significant challenge in FL architecture [8]. Real smart grid
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deployments exhibit extreme non-independent and identically
distributed (non-1ID) characteristics due to geographic, sea-
sonal, and socioeconomic differences [9]. Previous work has
used Dirichlet distributions to model this heterogeneity, where
parameter o controls the degree of data skewness [10]. As
« approaches 0.1, the data become extremely heterogeneous
across clients. Integrating blockchain with FL has gained atten-
tion for ensuring security and decentralization [11]. However,
traditional consensus mechanisms, such as proof of work,
suffer from high latency and low throughput, making them
unsuitable for real-time smart grid applications [12]. Recent
blockchain-based federated learning frameworks for energy
applications have demonstrated promising results, yet they still
face scalability challenges.

The problems discussed above show significant gaps in
current federated learning for load forecasting. Most research
has demonstrated that BiLSTM models outperform basic
LSTM [1], [13]; however, heterogeneous data from differ-
ent clients contradicts this assumption. Additionally, current
blockchain systems are too slow for real-time energy fore-
casting, and existing data splitting methods lead to unstable
training, making models unreliable [14], [15]. Most studies
don’t consider how different data distributions affect model
performance in distributed systems. To address these issues,
this paper proposes a novel approach that integrates intelligent
data partitioning with a customized blockchain utilizing the
proof-of-authority and association (PoA?) consensus mecha-
nism [16]. Our intelligent partitioning approach automatically
adjusts according to the models’ performance. The PoA?
provides efficient coordination needed for real-time energy
predictions due to its implementation of a redundant mining
technique that replaces idle validators. This paper makes the
following contributions:

o We propose an adaptive Dirichlet partitioning method that
stabilizes training performance.

e We implement a PoA? consensus mechanism for low-
latency, high-throughput blockchain coordination.

e We empirically demonstrate that vanilla LSTM out-
performs BiLSTM under extreme data heterogeneity
(a=0.1).

¢ We provide a comprehensive evaluation across multiple
energy consumption prediction metrics.
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II. RELATED WORKS

Recent federated learning applications in energy systems
have shown promise [2]-[4], but most assume BiLSTM
superiority based on centralized benchmarks [5], [5], [6]
demonstrated BiLSTM advantages in financial forecasting,
while [6] proposed CNN-attention-LSTM for multi-energy
forecasting. However, these studies don’t address extreme data
heterogeneity challenges in federated settings.

Data heterogeneity remains a significant challenge in fed-
erated learning (FL) [7]. Surveys of non-IID solutions have
been conducted by [8], while [7] studied IID to non-IID tran-
sitions. Additionally, [9] analyzed convergence in distributed
solar grids, highlighting the practical impacts of heterogene-
ity. Dirichlet distributions effectively model this heterogene-
ity [11], which uses Dirichlet partitioning but fails to specify
the alpha parameters. In contrast, [17] used unrealistic «,
which are infinite, creating uniform distributions that do not
reflect real-world heterogeneity. Vivian et al. [18] employed
neural networks for adaptive client selection but neglected
alpha considerations entirely.

Blockchain integration with FL has gained attention for
security and decentralization [19], [20]. Yang et al. [12]
proposed blockchain-based FL for power forecasting, while
Singh et al. [21] developed hierarchical blockchain-enabled
systems. Putra et al. [19] introduced PureFed, which offers
flexible FL task initiation without data sharing, but neglected
multiple alpha usage and relied on Ethereum, which has
inherent scalability limitations. Energy efficiency in federated
learning has also emerged as a concern [22], though Marnissi
et al. [22] developed sparsification frameworks without con-
sidering dynamic heterogeneous scenarios. Current work lacks
a comprehensive evaluation of architectural choices under
extreme heterogeneity in federated settings, particularly with
adaptive partitioning and low-latency blockchain coordination
for real-time energy forecasting.
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Fig. 1: Illustration of the proposed framework

III. MATHEMATICAL FORMULATION OF DIRICHLET
PARTITIONING IN FEDERATED LEARNING

As shown in Figure 1, modeling a realistic data heterogene-
ity in federated learning, we employ Dirichlet distribution-
based partitioning. For each client ¢ across C' classes in
Equation 1.

pZ = (pivlapi,Qv"'api,C) NDir(alc)v (1)

where « controls heterogeneity, with lower values creating
more skewed class distributions per client. Equation 2 gives
the actual sample allocation.

Nij,c = \_pﬁc X N1J7 (2)

where NN; is the total samples for client ¢ and the degree of
heterogeneity is quantified by Equation 3.
C—-1
Var[p;c| = .
wlpiel = Gaiea 1)

At high data heterogeneity (v = 0.1), most clients possess
only 1-2 dominant classes, resulting in non-IID conditions
that hinder the use of complex models. Under such skewed
distributions, simpler architectures, such as vanilla LSTM,
outperform BiLSTM due to better generalization and reduced
overfitting.

3)

C-1
C2(0.1C + 1)’
The extreme heterogeneity induced by o = 0.1, as shown in
Equation 4, creates client data distributions so disparate that
LSTM’s simpler architecture proves more robust to federated
aggregation challenges than BiLSTM’s complex bidirectional
gradient patterns.

a=0.1= Varlp; .| = 4)

C-1
C?(0.5C +1)
The moderate heterogeneity at o = 0.5 in Equation 5 enables
effective federated aggregation of BiLSTM’s complex gradi-
ents, eliminating the architectural performance gap observed
under extreme heterogeneity conditions.

Our PoA? consensus mechanism integrates with fed-
erated learning through a custom smart contract that
manages prediction storage and model verification. The
blockchain architecture ensures data integrity and enables
transparent performance tracking across federated clients
through a smart contract with key functions such as
storePrediction () to record model predictions with
timestamps and types, storeHistoricalData () which
archives predicted versus actual load comparisons, and
getPrediction () /getHistoricalData () which are
for retrieval functions for model validation and auditing.
The blockchain maintains records of prediction accuracy that
inform our adaptive Dirichlet parameter adjustments, ensuring
optimal « values based on verified federated learning perfor-
mance.

IV. RESULTS DISCUSSION AND ANALYSIS

A. Dataset Description and Experimentation Scenario

a=0.5= Varp, .| = (5)

This study uses one dataset: Hourly Energy Consumption
[23]. 10 rounds were carried out using S5 clients. The exper-
iments were conducted on a Windows 11 Pro system with
an Intel Core i5-8500 CPU at 3.00 GHz and 32GB of RAM.
Visual Studio Code with the Flower was used to carry out the
experiments. The PureChain network was accessed through
MetaMask with the smart contract written in Solidity and
deployed using Remix IDE.
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Fig. 2: R? learning process curve of the proposed approach with and without adaptive Dirichlet
B. Results bustness and training efficiency, particularly under conditions

The study evaluated LSTM and BiLSTM models over feder-
ated learning rounds using Dirichlet data distributions o = 0.1,
a = 0.5, and without «. The performance was compared
in terms of Loss, root squared (R?), and mean absolute
error (MAE) across federated communication rounds. Figure 3
illustrates that under extreme data heterogeneity (o = 0.1),
LSTM achieves faster and more stable convergence compared
to BiILSTM, whose loss declines more gradually. This suggests
that LSTM generalizes better in highly non-IID settings,
likely due to its simpler architecture being less sensitive to
inter-client inconsistency. In contrast, BILSTM’s bidirectional
complexity may lead to overfitting localized patterns, thereby
limiting its generalization under skewed distributions.

As heterogeneity decreases (o 0.5), the convergence
of both models becomes comparable, with BiLSTM slightly
outperforming LSTM in later rounds by leveraging its richer
temporal modeling. This indicates a shift where model choice
depends more on task-specific requirements, such as sequence
complexity. In the IID setting, both models converge rapidly
and similarly, highlighting that architectural differences have
minimal effect under uniform data, and emphasizing the
importance of aligning model selection with data heterogeneity
in federated learning.

Figure 2 presents the coefficient of determination (R?)
outcomes, highlighting the consistent performance advantage
of the LSTM model over BiLSTM across all tested config-
urations. At a regularization parameter of a = 0.1, LSTM
attains a substantially higher R? value of 0.92, surpassing
BiLSTM’s 0.81 by 11 percentage points. It indicates a marked
improvement in model fit. When v = 0.5, the performance gap
narrows, with LSTM and BiLSTM yielding R? scores of 0.955
and 0.953, respectively, though LSTM still retains a marginal
lead. Notably, in the absence of regularization (i.e., o omitted),
LSTM exhibits accelerated convergence behavior, reaching a
stable high-performance plateau by the third training round.
In contrast, BILSTM demonstrates a comparatively delayed
learning trajectory, requiring additional iterations to attain
similar accuracy levels. These findings highlight LSTM’s ro-

of low or no regularization.

Figure 3 illustrates the comparative loss convergence be-
haviors, with LSTM exhibiting a markedly more favorable
trajectory than BiLSTM. At a learning rate of « 0.1,
LSTM attains a final loss of 0.08, substantially outperforming
BiLSTM, which converges at a loss of 0.19, indicating a re-
duction in error exceeding 57%. This performance gap remains
consistent across a range of « values, with LSTM persistently
achieving both lower terminal loss values and accelerated
convergence. The sharper decline in the loss curves associated
with LSTM further emphasizes its superior optimization dy-
namics, in contrast to the more gradual convergence exhibited
by BiLSTM, which suggests relatively slower or less effective
parameter adaptation during training.

Figure 4 presents clear empirical evidence highlighting the
practical advantages of the LSTM architecture for energy
consumption forecasting in a federated learning framework.
At a significance level of « 0.1, the LSTM achieves
a markedly lower mean absolute error (MAE = 500) rel-
ative to the BiLSTM (MAE = 780), corresponding to a
36% reduction in prediction error. Although the disparity
in performance diminishes at elevated values of «, LSTM
consistently outperforms BiLSTM across the entire range.
This sustained advantage suggests that, despite the theoretical
benefits of bidirectional modeling offered by BiLSTM, the
added architectural complexity may introduce susceptibility
to overfitting, particularly in settings where the forward tem-
poral dependencies dominate or where data sparsity is a
concern. In contrast, LSTM’s unidirectional structure, with its
comparatively lower parameter count, demonstrates enhanced
generalization capabilities in this application. Collectively, the
results substantiate LSTM’s superiority in terms of prediction
accuracy, convergence behavior, and robustness across varying
experimental configurations.

Figure 5 shows a stable throughput of 146.8 to 147.0
predictions per minute and a mean inference latency of 166ms,
varying narrowly between 163.56ms and 168.55ms. This low
jitter supports real-time inference use cases. Over 3 min-
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Fig. 5: PureChain Performance

utes, the system produced 442 predictions, nearing theoretical
throughput limits and indicating efficient resource utilization.

Figure 6 shows a strong security assessment for the de-
ployed smart contract, scoring 97 with no high-severity vulner-
abilities, highlighting the robustness of the underlying security
framework. The system also achieves low latency (166ms) and
high throughput (147 predictions/min), meeting the demands
of real-time federated load forecasting with secure and timely
data coordination.

Fig. 6: Smart Contract Threat and Vulnerability Analysis
Report

Table I is a comparative analysis of related works on
Dirichlet partitioning methods in federated learning. Our ap-
proach outperforms prior work with the highest R? (0.95),
lowest loss (0.08), and highest MAE (0.95), specifically in
energy consumption prediction. Unlike earlier studies that
ignored or used unrealistic Dirichlet parameters (o« — o0), we
systematically evaluate multiple realistic a values (0.1, 0.5),
addressing a key gap in handling data heterogeneity.
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TABLE I: Comparison analysis of related studies with Dirichlet partitioning in Federated learning

Author Alpha (o) Values | R? MAE Loss Domain

Thekoronye [18] Not specified 0.96 | Not specified | Not specified Internet of Medical Things
Liu [5] Not specified 0.75 | Not specified 0.5 Energy Efficient

Our Work a=0.1,0.5 0.92 | 500 0.08 Energy Consumption Prediction

V. CONCLUSION

This study revisits the assumed superiority of BiLSTM
in federated energy forecasting and finds that, under high
data heterogeneity (a« = 0.1), standard LSTM outperforms
BiLSTM, achieving higher R? scores (0.92 vs. 0.81) and
36% lower prediction error. These results suggest that sim-
pler architectures generalize better in heterogeneous smart
grid environments. An adaptive Dirichlet partitioning scheme
improves training stability, while the proposed PoA? consen-
sus mechanism enables low-latency (166ms), high-throughput
(147 predictions/min), and secure (97%) coordination. The
framework meets key real-time requirements for decentralized
forecasting. Future work will investigate hybrid models and
multi-modal data, emphasizing the need to tailor model selec-
tion to heterogeneity rather than centralized benchmarks.
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