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Abstract—As a core component of power grids, the operational
status of oil-immersed transformers is directly linked to the
safety and stability of the entire power system. Dissolved Gas
Analysis (DGA) has been widely used to assess internal faults
in transformers. However, existing methods often rely on single-
model learning, which struggles to capture the complex couplings
and nonlinear dynamics among multiple gas components, leading
to limited prediction accuracy and anomaly detection capability.
To address these limitations, this paper proposes a novel anomaly
diagnosis and concentration prediction method for dissolved
gases in transformer oil based on a multi-expert learning mech-
anism. The proposed system integrates three complementary
expert models: the anomaly-aware expert identifies and repairs
abnormal points in historical gas concentration sequences; the
temporal modeling expert captures the dynamic evolution of gas
concentrations over time; and the context-aware expert models
the latent interactions among different gas components. A gated
fusion mechanism is designed to adaptively assign weights to
each expert according to the input context, enabling robust
multi-dimensional feature integration and reliable prediction.
Experimental results demonstrate that the proposed method
outperforms traditional single-model approaches under various
transformer operating conditions, offering strong support for
equipment condition monitoring and intelligent maintenance.

Index Terms—Dissolved Gas Analysis, Mixture of expert.

I. INTRODUCTION

Oil-immersed transformers are critical to the stable oper-
ation of power grids [1], [2]. Under long-term high voltage,
heavy load, and harsh environmental conditions, internal in-
sulating materials such as transformer oil and paper gradually
degrade, leading to thermal decomposition, electrical break-
down, and partial discharge. These processes generate gases
like hydrogen (H;), methane (CHy), ethane (CoHg), ethylene
(C3Hy), acetylene (C2Hs), carbon monoxide (CO), and carbon
dioxide (COs3), which dissolve in transformer oil. Monitoring
the concentration of these gases provides valuable insight into
internal faults, making Dissolved Gas Analysis (DGA) one of
the most effective diagnostic tools widely used for condition
monitoring and maintenance in the power industry [3].

The accuracy of DGA-based diagnosis, however, depends
heavily on data processing methods and modeling algorithms.
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Fig. 1. Flowchart of the dissolved gas anomaly diagnosis and prediction
method based on multi-expert learning.

Traditional approaches, such as rule-based methods, the Duval
Triangle [4], [5], and Rogers Ratio [6], are simple but lack
adaptability to complex scenarios, fluctuating gas concen-
trations, and multi-factor coupling effects. Rooted in static
thresholds, these methods struggle to distinguish nuanced fault
patterns—for example, gradual hydrogen accumulation versus
abrupt spikes. Their rigidity often leads to misdiagnoses in
non-stationary operating conditions.

Driven by the rise of data-driven methods, machine learning
and deep learning have been increasingly applied to DGA.
Models ranging from traditional algorithms like SVM, De-
cision Trees, and KNN to advanced deep learning meth-
ods such as CNN-GRUT [7] and EMD-gcForest [8] have
shown improved fault detection capabilities. Nevertheless, key
challenges persist. Dissolved gas data is a high-dimensional
time series with frequent fluctuations and complex inter-gas
relationships, making it difficult for single models to capture
global patterns, local anomalies, and gas coupling effects
simultaneously. Moreover, the presence of outliers often de-
grades model performance, and many existing studies overlook
data anomalies.

To address these challenges, this paper proposes a dis-
solved gas anomaly diagnosis and concentration prediction
method for oil-immersed transformers based on a mixture
of expert [9], [10] learning mechanism. The core idea is
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to integrate multiple expert modules with distinct modeling
capabilities, enabling collaborative learning and information
fusion to achieve deep understanding and accurate modeling
of multi-component gases. Specifically, the anomaly-aware
expert targets anomaly detection, evaluating potential abrupt
changes in the time series and repairing/compensating abnor-
mal data to ensure the reliability of subsequent modeling—a
critical step for improving data quality and reducing error
propagation. The temporal modeling expert focuses on mining
the inherent evolutionary trends of gas concentrations over
time, leveraging a structurally optimized Gated Recurrent
Unit (GRU) network to enhance the model’s perception of
dynamic changes and long-term dependencies. Meanwhile,
context-aware experts model interactive coupling relationships
between different gases, constructing contextual semantics
among gas components via a Bi-LSTM network to improve
the recognition of local gas combination patterns.

To fully exploit the complementary advantages of these
modules, a gating fusion mechanism is designed to dynam-
ically assign weights to each expert’s output. This ensures the
final prediction not only captures global temporal modeling
capabilities but also accounts for local anomaly detection and
gas coupling relationships, with the gating module learning
the importance of different experts across scenarios based on
the input sequence to enhance adaptability and robustness.

Extensive experiments validate the method using operational
data from multiple substations, covering diverse operating
conditions, fault types, and time periods. Evaluations focus on
regression prediction accuracy, anomaly detection capability,
and stability under noisy data. Results demonstrate that the
proposed multi-expert fusion model significantly outperforms
traditional single-model methods and existing ensemble learn-
ing strategies across multiple metrics, enabling more accurate
characterization of dissolved gas evolution trends and fault
features in oil.

II. PROPOSED METHOD
A. Anormaly Aware Expert

In dissolved gas analysis (DGA) of transformer oil, fac-
tors such as sensor noise, environmental disturbances, or
communication errors often lead to irregular anomalies in
the historical gas concentration sequences, including sudden
spikes, drifts, or missing values. These abnormal data points
not only compromise the accuracy of fault diagnosis but may
also mislead the training of subsequent predictive models.
To effectively detect and repair such anomalies, this paper
introduces an Anomaly-Aware Expert module, designed as a
self-correcting sequence modeling network. Its purpose is to
capture abnormal patterns within the time series and output
reconstructed, “clean” gas sequences, thus providing more
reliable input for the downstream expert modules.

The Transformer model [11], originally developed for nat-
ural language processing tasks, offers strong parallel compu-
tation capabilities and excels at modeling long-range depen-
dencies. Compared with traditional recurrent neural networks,
the Transformer processes the entire sequence simultaneously
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Fig. 2. Architecture diagram of the anormaly aware expert.
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without relying on sequential calculations. Its self-attention
mechanism enables flexible modeling of dependencies be-
tween different time steps, making it particularly suitable for
capturing complex patterns in gas concentration sequences,
such as abrupt changes, periodic fluctuations, and localized
anomalies. Moreover, the Transformer architecture supports
deep stacking and multi-head attention mechanisms, allowing
the model to capture multi-scale features from various levels
and perspectives.

1) Model Architecture Design: In our design, the Anomaly-
Aware Expert is responsible for two critical tasks: Detect-
ing and repairing abnormal fluctuations in the historical gas
concentration sequence; Providing clean and reliable data for
accurate future gas evolution prediction. To achieve this, we
propose a dual encoder framework consisting of an encoder,
anomaly repair detector, and future prediction detector, as
illustrated in the following.

We first perform a linear transformation on the original
gas concentration sequence, mapping each timestamp’s gas
concentration vector into a fixed-dimensional feature space,
forming the initial embedding representation. The input oil-
gas sequence is defined as:

X = [x1,X2,...,x1] € REX™ 1)
Here, L represents the sequence length, and m = 7, which
corresponds to the seven typical dissolved gases in transformer
oil: Hy, CH4, C3Hg, CoHy, CoHy, CO, and COs. ze first
project the input sequence into a high-dimensional embedding
space using a linear transformation:

Hy = XW; +b e RExd )
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Where d is the embedding dimension used consistently across
Transformer layers. Since the Transformer lacks inherent tem-
poral ordering capability, we incorporate a fixed positional
encoding P into the embedding, ensuring the model can
distinguish both sequence order and relative positions:

H), = XW, + P 3)

After the linear transformation and positional encoding, the
features are passed to the encoder for further extraction and
anomaly-aware representation learning.

2) Encoder Module: The role of the encoder is to project
the gas sequence features into a high-dimensional space, cap-
turing temporal dependencies and potential abnormal interac-
tions hidden within the sequence. To fully model the nonlinear
temporal variations and complex relationships between normal
and abnormal patterns, we adopt a Transformer-based encoder
structure. Specifically, the Transformer encoder consists of L
stacked layers, each containing a Multi-Head Attention (MHA)
mechanism and a Feedforward Neural Network (FFN). The
first layer takes the embedded sequence H;_; as input, and
computes global dependencies via:

. QKT
head; = Attention(Q, K = 4
ead; ttention(Q, K, V) NG 1% ()]
Where @, K, and V represent the query, key, and value
matrices, respectively, obtained by linear transformations of
the input:

Qi = H171W?7

Ki=H, W[, Vi=H_ W/ )

Here, W&, WX, and WY are learnable parameters for the
i-th attention head, with WzQ ,WE WY € R where d
is the embedding dimension and dj, is the attention subspace
dimension. The outputs from all attention heads are concate-

nated and passed through a linear layer:

z = Concat(heady, ..., headp)W, + b (6)

Subsequently, z is fed into a position-wise Feedforward Neu-
ral Network (FFN), which applies non-linear transformations
independently to each time step:

FFN(z) = ReLU(zW1 + b;)W3 + by @)

This design enhances the model’s expressive power, allowing
it to learn complex nonlinear relationships and distinguish
hidden anomalies or subtle variations in the gas sequence.

3) Anomaly Restoration Decoder Module: In the monitor-
ing data of dissolved gases in oil, abnormal fluctuations (e.g.,
abrupt changes, drifts, or missing values) often occur due to
sensor limitations, external interference, or system anomalies.
These anomalies not only reduce the accuracy of fault detec-
tion but also disrupt subsequent trend modeling and prediction.
Thus, detecting anomalies alone is insufficient; we must also
repair or replace them to ensure models use complete, reliable
data. The goal of this module is to replace detected anomalies
such that the restored sequence preserves the original dynamic
trend while eliminating abnormal disturbances.

In the anomaly perception expert model, after encoding gas
concentrations at each time step, we calculate an anomaly
score using the latent state vector to identify anomalies. We
use a prediction-residual-based scoring mechanism:

B = W, + by, ®)

The anomaly score is the mean squared error between the
prediction and the observed value:

St = HXt - Et||§ &)

We set a correction threshold 7. if s; > 7, the time step is
anomalous and requires correction. The threshold is adaptively
adjusted as follows:

T = s+ A0 (10)

For anomalous time points T’ = [t1, t2, . .., tx], we reconstruct
observations into smooth values T; to replace anomalies.

4) Future Prediction Decoder Module: We propose a
context-aware sequence imputation method using transformer-
based interpolation. For anomalous positions, we replace val-

ues with [MASK], which is a learnable vector:
. [MASK], ..., 2] (11)

12)

X = [.13173,‘2, ..
Z; = MLP(H,) € RE*4

5) Training Objective Functions: The model replaces
anomalies with [MASK] and optimizes predictions against
original values via regression:

1
Ly = [T — 4
7] 2

teT

(13)

Beyond imputation, the model predicts future concentrations
(K steps ahead) to enhance long-term trend modeling:

1 K
Ly = I kz_:l |Zr4k — 27k

(14)

This loss encourages accurate future trend capture, guiding
decisions like early warning and maintenance. Jointly optimiz-
ing imputation and prediction strengthens the model’s anomaly
handling and time-series modeling capabilities.

B. Temporal Modeling Expert

1) Model Architecture Design: In the evolution process of
dissolved gas concentrations in oil, gas components typically
exhibit trends and phased changes over time, such as slow
accumulation, abrupt growth, or periodic fluctuations. To ef-
fectively model this dynamic evolution, the temporal modeling
expert aims to extract deep time-dependent features from
historical gas sequences to predict future concentration trends.
Considering the limited length, sparsity, and non-stationarity
of dissolved gas data in oil, this paper adopts the Gated
Recurrent Unit (GRU) [12] as the core modeling framework,
which balances modeling capability while reducing parameter
complexity and overfitting risk. The model structure is shown
in the following figure:
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Fig. 3. Architecture diagram of the temporal modeling expert.

2) Gated Recurrent Unit: GRU controls information for-
getting and retention via a reset gate and an update gate.
Specifically, the update gate z; determines how much historical
information from the previous hidden state h;_; is retained in
the current hidden state h;:

Zt = O'(Wzl't + Uzht_l + bz) (15)

If z; is large, the model tends to retain new information from
the current input; otherwise, it relies more on historical states.
The reset gate r; controls the information interaction between
the current input and the previous hidden state, deciding
whether to forget part of the previous information to avoid
redundant or irrelevant content interfering with the model’s
judgment:

ry = o(Wyxy + Uphi—1 + b,) (16)

If r; is close to 0, the model “resets” the influence of historical
states, using only the current input. Notably, when a state
abrupt change is detected, the reset gate helps the model
quickly adjust its dependence on historical information.

hy = tanh(Whzy + Up (e @ hy_y) + bp) (17)

Here, the reset gate “trims” the previous state, retaining only
parts helpful for the current input, which then fuses with the
new input to generate a candidate state. The tanh activation
constrains values to [—1,1].

hy = (1—Zt)®ht—1+2t@h~t (18)

Here, z; controls the fusion ratio of old and new information.
A small z; means the current input is less important, so
more historical information is retained; a large z; indicates
the current input carries key trends, so old states are replaced
promptly.

3) Objective Function Optimization: In the prediction
phase, we use the last hidden state i as the initial condition
and predict future « steps via the decoder:

hrs1 = GRU(hy)

~ (19)
Tr41 = WohT+1 + bo

The final predicted sequence [T741,...,Z71+q] iS generated
step-by-step through this decoding process and serves as the
target for comparison with true values in the loss function.
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Fig. 4. Architecture diagram of the context aware expert.

The loss function uses mean squared error (MSE) to measure
the distance between predictions and true values:

1 THa sd @ @
o ~( )2
t=T+1 1=1

C. Context Aware Expert

1) Model Architecture Design: To capture the complex
dependencies among gases, we propose a context-aware expert
model based on the LSTM (Long Short-Term Memory) [13]
architecture. The core goal of this module is to model the
collaborative evolution patterns among different gas compo-
nents at the same time step. Unlike traditional univariate
modeling, we introduce the idea of “’cross-variable utilization”
for modeling coupling relationships, enabling the model to
not only understand the temporal trends of gases but also
capture the interactive relationships among gases at the current
moment, thereby enhancing the model’s ability to represent
potential fault patterns.

In the context-aware expert model, we treat the vector
composed of all gas components at each time step ¢ as the
basic input unit, defined as:

X = x§1)7x§2),...,x§7)]1— e R” 2n
where the superscripts denote gas component types (e.g., Ho,
CH,4, CoHg, etc.). As shown in Eq)uation (2), we map x;
to a high-dimensional embedding egl to enhance its context
representation capability. Subsequently, we feed the entire
gas sequence [egl),egm,...,eg) into the LSTM model,
leveraging its powerful sequence modeling ability to model
the joint distribution of gases over time. The model structure
is illustrated in Figure 3.

2) Context Modeling Design: The internal structure of
LSTM consists of three gates (forget gate, input gate, output
gate) and a memory cell. For some gas components, their
changes may have little relation to the target gas. The forget
gate automatically reduces the influence of such irrelevant
information to avoid noise interference:

where Wy and by are learnable parameters, and h;_; is the
hidden state from the previous step. The input gate determines



how much new information is “written” into the current
memory cell:
I =0 (Wilh_1,e;] + b;)

(23)

Next, we calculate the candidate memory state and update the
memory cell, allowing the model to retain long-term patterns
while incorporating cross-gas features at the current moment:

Ei = tanh (Wc[hi—h ei] + b(») (24)

G=fLo0aa+1L0g (25)

Finally, the output gate decides how much activated memory
content to pass to the next layer or final output. In downstream
tasks, the current memory and output gate are used to select
the true output vector:

O; =0 (Wylhi_1,ei] +b,) (26)

h; = O; ® tanh(¢;) 27

3) Objective Optimization Design: Similar to Section 2.3,
we use MSE to measure the difference between predicted gas
values and true values. The formula is as follows:

1 T
-y
|I| i=1 t=1

We calculate the loss for each gas type, directly optimizing
the independent prediction errors of all gases, which helps
improve the overall prediction accuracy.

(28)
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III. MIXTURE OF EXPERTS MODEL

In the preceding sections, we constructed three expert
models targeting different modeling objectives: The anomaly
perception expert detects and repairs anomalies in gas concen-
tration sequences, the temporal modeling expert captures the
temporal evolution trends of a single gas and the context-aware
expert models the complex cross-gas dependencies at the same
time step. However, in actual power equipment monitoring
scenarios, the evolution of gas concentrations is often jointly
influenced by anomalies, historical trends, and component
interactions. Relying on a single expert is insufficient to fully
characterize this dynamic process.

To address this, we propose a multi-expert fusion framework
(Mixture of Experts, MoE), which integrates the advantages
of the three experts and uses a dynamic gating mechanism to
achieve multi-perspective information fusion and collaborative
prediction. Specifically, we use a multi-layer perceptron as the
gating network, which generates expert weights in real time
based on the characteristics of the input data. The formula is:

g(x) = softmax (W,x + by) (29)

where g(x) represents the output weights of each expert, and
x is the actual output of each expert. The final prediction result
is the weighted sum of the outputs of all experts.

IV. EXPERIMENTS

A. Dataset Introduction

To comprehensively evaluate the proposed model’s capa-
bility in modeling and generalizing complex multivariate time
series data, this study constructs an experimental dataset based
on transformer online monitoring data collected from 37
typical substations and 471 high-voltage transmission lines
across the country. The dataset spans several years, ensuring
broad representativeness and practical application value. After
data cleaning and pre-processing, more than 2.56 million valid
high-quality time series samples were obtained, providing a
solid data foundation for model training and validation.

B. Dataset Preprocessing

To address measurement errors and extreme outliers in field-
collected data, systematic data cleaning and normalization
were performed before modeling. First, anomalies were de-
tected using the interquartile range (IQR) method: for each gas,
the first quartile (Q;) and third quartile (Qs3) were calculated,
with the IQR defined asIQR = Qs — Q;. Observations
outside the range[Q; — 1.5IQR, Q3 + 1.5IQR]|were identified
as outliers and removed. Missing values were imputed using
the Exponential Weighted Moving Average (EWMA), which
assigns higher weights to recent data.To construct input-output
pairs for sequence modeling, a sliding-window mechanism
was adopted: a window size of 32 time steps was used to input
historical data and predict the next time step, with a step size
of 16 to generate large-scale data pairs. The cleaned data were
split into training, validation, and test sets at an 8:1:1 ratio.
Optimal model parameters were selected using the validation
set, and the test set was used to evaluate generalization ability.

C. Evaluation Metrics

To comprehensively assess the model’s performance in
multi-variable time-series prediction, two metrics were used:
Root Mean Squared Error (RMSE) and Mean Absolute Per-
centage Error (MAPE). Lower values indicate smaller devia-
tions. The formulas are as follows:

N
LS o2
RMSE = , | — = Ui 30
s N;@ i) (30)
100% = | i — v
MAPE = (31)

D. Experimental Setup

The Adam [14] optimizer was used to update model
weights, with an initial learning rate of 10~°, a dropout rate of
0.1, a hidden dimension of 128, a batch size of 128, and 500
training epochs. All encoders had 4 layers; the anomaly-aware
expert model used 8 attention heads, and the decoder had 1
layer.
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TABLE I
COMPARISON OF RMSE RESULTS BETWEEN SINGLE-EXPERT AND MULTI-EXPERT MODELS

Model Ho CHy CoHg CoHy CoHo CO COq
MLP 6.74 377 0.95 0.64 0.38 98.65 56.36
Anomaly-Aware Expert 440 376 1.87 0.24 0.41 4796  98.58
Temporal Modeling Expert 3.00 325 1.89 0.43 0.62 49.52 62.87
Context-Aware Expert 2.57 322 1.88 0.52 0.91 51.59 28.03
Multi-Expert Learning Model (Ours) 1.87  1.89 0.43 0.16 0.34 742 2529
TABLE II
COMPARISON OF MAPE RESULTS BETWEEN SINGLE-EXPERT AND MULTI-EXPERT MODELS
Model Ho CHy CoHg CoHy CaoHo CO CO2
MLP 76.76  47.80  89.14 60.83 3293 5534 57.13
Anomaly-Aware Expert 84.09 47.72  65.05 62.22 38.52 7441 9585
Temporal Modeling Expert 5723 41.14 65,60 130.14 1497 7455 95.95
Context-Aware Expert 4897 4485 6547 157.78 4671 7475 9599
Multi-Expert Learning Model (Ours)  35.55 40.97  60.88 24.60 4.14 73.98 96.12

E. Experimental Results

To evaluate the multi-expert learning model for dissolved
gas time-series regression, comparative experiments were de-
signed to compare single-expert and multi-expert models.
Training configurations and input-output formats were stan-
dardized to ensure fairness, with results rounded to two
decimal places. The best-performing results are highlighted
in bold in the tables.

F. Experimental Analysis

From the results in Table, the multi-expert learning model
demonstrates significant advantages in dissolved gas regres-
sion. In detail, RMSE metric: The multi-expert model achieves
the lowest errors across all gases (e.g., Ho, CH,4, CO), show-
casing stronger fitting ability, reduced bias, and better gener-
alization. MAPE metric: The multi-expert model outperforms
others for most gases, especially fault-sensitive gases (e.g.,
CoHy, CoHsy), indicating superior adaptability and robustness.

Single-expert models capture only partial features, while the
multi-expert mechanism integrates anomaly detection, tempo-
ral modeling, and context-aware capabilities, enabling collab-
orative feature learning and improving prediction accuracy.

V. CONCLUSION

This paper proposes a prediction model for time series
forecasting of dissolved gases in transformer oil based on
a multi-expert learning mechanism. The model combines
anomaly-aware, temporal modeling, and context-aware experts
to achieve comprehensive modeling of complex industrial
signals. Experiments on multiple gas indicators show that the
proposed model significantly outperforms conventional multi-
layer perceptron and single-expert models in both RMSE and
MAPE metrics. The results demonstrate that the multi-expert
model achieves lower prediction errors and effectively adapts
to diverse signal patterns, including trends, sudden changes,
and contextual dependencies, highlighting strong generaliza-
tion and robustness. Compared with traditional methods, the
model is better suited for equipment condition monitoring

and anomaly detection in complex environments, with high
engineering application value.

Future work will explore enhanced collaboration among ex-
pert models through dynamic weight adjustment or reinforce-
ment learning, and extend the method to broader intelligent
maintenance tasks such as equipment life assessment.
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