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Abstract—Dissolved gases in transformer oil are important
diagnostic indicators of transformer operating conditions. To
overcome the limitations of traditional single models in fusion
of multi-gas signal information and dynamic response capa-
bilities, this paper proposes an integrated modeling method
based on a multivariate variable-weighting mechanism. First,
based on the time-series characteristics and nonlinear variation
of dissolved gas data, autoregressive moving average (ARMA),
gray prediction model (GM), and Transformer-based deep time-
series modeling methods are constructed as base prediction
models. These models build a multivariate prediction structure
from the perspectives of linear trend modeling, gray system
approximation, and complex time-series feature extraction. Then,
a variable-weighting distribution module based on long short-
term memory (LSTM) network is designed, which dynamically
outputs the optimal combination weight over time by learning the
signal features. Finally, the prediction results of each base model
are integrated according to the weights, forming a multivari-
ate variable-weighting combination prediction model. Validation
using large-scale real-world data covering multiple substations
and operating conditions shows that the proposed multivariate
variable-weighting combination prediction model delivers high
accuracy and stability.

Index Terms—dissolved gas in transformer oil, Transformer,
long short-term memory network, model ensemble

I. INTRODUCTION

Ultra-high voltage transformers are essential for voltage
conversion, long-distance transmission, and renewable energy
integration in modern power systems. Given their complex
structures and harsh operating conditions, failures such as
partial discharges, winding short-circuits, and insulation degra-
dation pose serious risks to grid stability. These faults often
manifest as abnormal increases in dissolved gases within
transformer oil—especially hydrogen (H2), methane (CH4),
ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon
monoxide (CO), and carbon dioxide (CO2). For example,
elevated hydrogen and acetylene levels typically indicate arc-
ing, while increases in methane and ethylene often signal
overheating. Dissolved Gas Analysis (DGA) is thus widely
used for transformer condition monitoring and fault diagnosis.
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Fig. 1. Overview of the proposed multivariate variable-weight forecasting
framework. It combines ARMA, GM(1,1), and a Transformer-based model,
with an LSTM-based module adaptively assigning dynamic weights for
ensemble prediction.

Accurate forecasting of gas trends enables early fault detection
and supports preventive maintenance, thereby improving grid
safety and operational reliability.

In recent years, substantial research has focused on forecast-
ing dissolved gas concentrations in oil-immersed transformers.
Modeling approaches have mainly followed three techno-
logical trajectories: statistical modeling, traditional machine
learning, and deep learning. These methods address key chal-
lenges of DGA time-series data—including nonlinearity, non-
stationarity, and high-dimensional coupling—by progressing
from linear assumptions to data-driven strategies and from
univariate modeling to multi-scale fusion, reflecting a shift
toward more intelligent diagnostic frameworks.

Statistical methods remain valuable in practical engineering.
For example, [1] combined grey relational analysis with Gaus-
sian Process Regression to model inter-gas dependencies while
reducing noise. [2] introduced a seasonally adjusted SARIMA
model with external environmental factors to improve stabil-
ity. While effective for short-term prediction, such methods
struggle to capture complex temporal dynamics.

With deep learning advances, models like DBN [3], [4],
LSTM [5]–[7], and GRU [8] have demonstrated stronger abili-
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ties in nonlinear and temporal modeling. Hybrid methods, such
as CEEMDAN-DBN-ELM [9], further enhanced performance
via feature decomposition and hierarchical representation.

However, from the perspective of practical application, sev-
eral notable issues remain in existing approaches. First, single
models often struggle to accommodate the high-dimensional
heterogeneity inherent in multi-gas data, typically exhibiting
only local superiority under specific conditions and lacking
robust generalization capabilities. Second, although ensemble
strategies have become a prominent means to improve predic-
tion accuracy, most existing methods rely on static weighting
schemes, which fail to capture the temporal responsiveness
and performance variation across models, thereby limiting the
effectiveness of fusion. Moreover, while some deep learning
models possess strong feature extraction abilities, they often
fall short in capturing linear trends and medium-to-short-term
perturbation structures embedded in raw time series data,
leaving room for performance improvement.

To address these challenges, this study proposes an ensem-
ble modeling method based on a multivariate dynamic weight-
ing mechanism, aiming to enhance both prediction accuracy
and the model’s generalization and adaptive capabilities. As
illustrated in Fig. 1, the proposed method integrates three het-
erogeneous base models—namely, the Autoregressive Moving
Average (ARMA) model [10], the Grey Model (GM) [11],
and a Transformer-based deep temporal model—forming a
multi-perspective prediction system that jointly captures linear
trends, fuzzy approximations, and complex dynamic depen-
dencies. In addition, a Long Short-Term Memory (LSTM)-
based dynamic weighting module is introduced to adaptively
adjust the contribution of each base model over time. This
results in a fusion forecasting framework characterized by
multi-level structure, cross-model coupling, and feature com-
plementarity. Extensive empirical evaluations confirm that the
proposed method consistently achieves superior accuracy and
robustness across different gas types and operational scenarios,
demonstrating its practical potential for intelligent transformer
condition assessment and fault prediction.

II. METHODOLOGY

A. Autoregressive Moving Average Model
The autoregressive moving average model is a classical and

widely applied approach in time series analysis, primarily used
to model the linear relationships of stationary time series data.
The ARMA model combines the autoregressive (AR) process
and the moving average (MA) process, achieving fitting and
forecasting of time series by linear regression on historical
data and smoothing of random errors.

The AR process assumes a direct linear dependency be-
tween the current value and its past observations, which can
be expressed as:

Xt = c+
P�
i=1

ΦiXt−i + ϵt (1)

where Xt is the observed value at time t, c is a constant term,
Φi are the autoregressive coefficients, Xt−i denotes the lagged

observations up to lag i, and ϵt is a white noise term with zero
mean. The MA process models the current value as a linear
combination of past white noise error terms, described by:

Xt = µ+

q�
i=1

θiϵt−i + ϵt (2)

where µ is the mean of the series, θi are the moving average
coefficients, ϵt and ϵt−i represent current and past white noise
error terms respectively. This process adjusts the current output
by weighting historical disturbances, enhancing the model’s
capability to capture short-term fluctuations. The complete
ARMA model integrates both processes as:

Xt = c+

P�
i=1

ΦiXt−i +

q�
j=1

θiϵt−j + ϵt (3)

B. Grey Prediction Model

The grey prediction model is capable of extracting the latent
trend of dissolved gas concentrations through an accumulated
generating operation. As a core component of grey system
theory, it demonstrates excellent performance in modeling
behaviors and forecasting trends in systems characterized by
small sample sizes and incomplete information. In this study,
the GM(1,1) model is introduced as one of the base sub-
models. Let the original non-negative time series be denoted
as:

X(0) = {x(0)(1), x(0)(2), ..., x(0)(n)}, n ≥ 4 (4)

An accumulated generating operation is first applied to the
raw sequence to obtain a new series:

X(1) = {x(1)(1), x(1)(2), ..., x(1)(n)}

x(1)(k) =
k�

i=1

x(0)(i)
(5)

To smooth the input for model construction, a neighboring
mean series Z(1) is constructed:

Z(1)(k) =
1

2

�
x(1)(k) + x(1)(k − 1)

�
, k = 2, 3, ..., n (6)

A first-order linear differential equation is then formulated as:

dx(1)(t)

dt
+ ax(1)(t) = b (7)

where a is the development coefficient, reflecting the rate of
change of the system variable over time, and b is the grey
input, indicating the influence of external inputs or baseline
trends on the system behavior. This equation can be rewritten
in matrix form as:

Y = B · θ

Y =




x(0)(2)
x(0)(3)

...
x(0)(n)


 , B =




−Z(1)(2) 1
−Z(1)(3) 1

...
...

−Z(1)(n) 1


 , θ =

�
a
b

�
(8)
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Fig. 2. Architecture of the Transformer-based regression model. It consists
of a shared encoder and two parallel branches: a regression branch for target
forecasting and a reconstruction branch for auxiliary sequence modeling.

The parameter vector θ can be estimated using the least
squares method:

θ̂ =
(
BTB

)−1
BTY (9)

Once the parameters a and b are obtained, the predicted values
of the accumulated series can be computed as:

x̂(1)(k + 1) =

(
x(0)(1)− b

a

)
e−ak +

b

a
(10)

Finally, the predicted values of the original sequence are
recovered by:

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) (11)

C. Transformer-based Deep Regression Model

With the increasing complexity of industrial monitoring data
and the escalating demands for prediction accuracy, traditional
time series modeling methods have gradually exhibited limita-
tions in capturing nonlinearities, long-range dependencies, and
multivariate couplings. Since its introduction, the Transformer
model [12] has progressively become a mainstream framework
for sequence modeling tasks. Leveraging a purely attention-
based architecture, it dispenses with the reliance on conven-
tional recurrent structures and demonstrates superior capabil-
ities in capturing long-distance dependencies, enhancing par-
allel computation efficiency, and modeling complex dynamic
relationships. In the domain of time series forecasting, the
Transformer’s self-attention mechanism effectively uncovers
latent dynamic dependency structures within sequences. This
global modeling capacity and strong feature representation

ability provide significant advantages, especially when dealing
with complex operating conditions.

The Transformer model employs a multi-head attention
mechanism to model dependencies between arbitrary positions
within the input sequence. This avoids the gradient vanishing
and inefficient sequential propagation issues commonly faced
by traditional recurrent neural networks such as LSTM and
GRU when handling long sequences. The mechanism calcu-
lates attention weights between each time step in the input
sequence, thereby enabling efficient extraction of global se-
mantic information. Its mathematical formulation is expressed
as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (12)

Here, Q, K, and V represent the linearly projected query, key,
and value vectors, respectively, and dk denotes the dimen-
sionality of the attention subspace. The multi-head attention
mechanism performs the above attention operation in parallel
across multiple subspaces, concatenating the results to produce
the final output:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (13)

Each attention head is computed as:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (14)

where WQ
i , WK

i , and WV
i are the projection matrices that

map the original Q, K, and V into the i-th subspace.
To thoroughly capture the dynamic structural features and

evolutionary trends within the dissolved gas concentration
sequences, as well as to enhance the model’s generalization
ability and prediction robustness, this section proposes a
dual-branch Transformer regression architecture incorporating
multi-task learning principles. As illustrated in Fig. 2, the
model consists of three components: a shared encoder, a
reconstruction decoder, and a regression decoder.

In multivariate sequence modeling tasks, effectively extract-
ing latent inter-variable dependencies significantly impacts
both predictive performance and generalization capability. To
this end, the embedding structure employed in this model
maps multiple dissolved gas concentration signals into a uni-
fied high-dimensional representation space. Subsequently, the
Transformer encoder performs global temporal modeling and
joint learning of inter-variable couplings. The input sequence
is defined as:

X = [x1, x2, . . . , xT ] ∈ RT×d (15)

where xt = [x
(1)
t , x

(2)
t , . . . , x

(d)
t ] ∈ Rd represents the dis-

solved gas observation vector at time step t, with d = 7
corresponding to seven dissolved gas signals.

To enhance the model’s capacity for representing multi-
gas time series and fully exploit their nonlinear interaction
patterns, the gas signals are first processed by an embedding
module composed of a three-layer Multi-Layer Perceptron
(MLP) before being input into the Transformer encoder. This
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module acts as a high-dimensional semantic transformer for
the raw inputs:

Z = MLP(X) ∈ RT×dmodel (16)

After embedding, the multi-gas embedded vectors Z are fed
into the shared encoder module to extract the internal dynamic
evolution patterns of the sequence. The encoder consists of L
stacked Transformer encoder layers, each comprising multi-
head self-attention and feed-forward network structures, sup-
plemented with residual connections and layer normalization
to improve training stability. The feature update at each layer
is expressed as:

H(l) = FFN
(
MultiHead(LN(H(l−1)))

)
+H(l−1) (17)

where LN(·) denotes layer normalization, with initial input
H(0) = Z. The final output of the shared encoder is Henc =
H(L) ∈ RT×dmodel .

During the decoding phase, the model adopts two parallel
task-specific branches: the reconstruction decoder and the
regression decoder, which serve the goals of high-quality
input sequence reconstruction and accurate future sequence
prediction, respectively. Both branches share the temporal
representations Henc produced by the encoder but differ in
architectural design and modeling objectives.

The reconstruction decoder employs a nonlinear mapping
architecture composed of a Transformer decoder and an MLP,
primarily used to compress and restore the high-dimensional
semantic representation of the input sequence, facilitating the
encoder’s learning of key features during training:

X̂ = Decoderrec(Henc) ∈ RT×d (18)

In contrast, the regression decoder adopts a standard Trans-
former decoder architecture with the primary goal of forecast-
ing the multivariate gas concentration sequence over the next
T ′ time steps. This decoder takes a placeholder sequence for
the future time steps as its target-side input and leverages self-
attention and cross-attention mechanisms to capture contextual
dependencies within the time series and long-range dependen-
cies from the encoder outputs. The final predicted output Ŷ is
given by:

Ŷ = Decoderreg(Yinit, Henc) ∈ RT ′×d (19)

where Yinit denotes the initial placeholder sequence at the
decoder input.

The two decoding branches are jointly trained by minimiz-
ing the Mean Squared Error (MSE) loss functions. The loss
functions are defined as follows:

Lrec =
1

Td

T∑
t=1

d∑
j=1

(
x
(j)
t − x̂

(j)
t

)2

(20)

Lreg =
1

T ′d

T ′∑
t=1

d∑
j=1

(
y
(j)
t − ŷ

(j)
t

)2

(21)

The overall loss function is the sum of the two losses:

L = Lrec + Lreg (22)
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Fig. 3. Illustration of the LSTM-based adaptive weighting prediction
module. It learns dynamic fusion weights for multiple base models by
capturing temporal context, enabling time-varying contribution adjustment and
improving overall prediction accuracy.

D. LSTM-based Dynamic Weighting Prediction Module

Although the three base models capture dissolved gas se-
quences from linear, fuzzy, and deep dynamic perspectives,
fixed-weight fusion cannot reflect their varying effectiveness
across different time steps, especially under complex and
non-stationary industrial conditions. To address this issue, an
LSTM-based dynamic weighting module is introduced to learn
context-aware weight allocations, allowing adaptive model
contributions and improving the flexibility and accuracy of
the ensemble framework.

As an improved variant of recurrent neural networks
(RNNs), LSTM mitigates the gradient vanishing problem
inherent in traditional RNNs when processing long sequences
by incorporating gating mechanisms, thus effectively capturing
long-range dependencies. The core LSTM structure comprises
a forget gate, input gate, and output gate, which are mathe-
matically formulated as follows:

ft = σ (Wf [ht−1, xt] + bf ) (23)

it = σ (Wi[ht−1, xt] + bi) (24)

c̃t = tanh (Wc[ht−1, xt] + bc) (25)

ct = ft ⊙ ct−1 + it ⊙ c̃t (26)

ot = σ (Wo[ht−1, xt] + bo) (27)

ht = ot ⊙ tanh(ct) (28)

where xt denotes the input vector at time step t, ht the current
hidden state, and ct the cell memory state; σ(·) is the sigmoid
activation function; ⊙ denotes element-wise multiplication;
Wf ,Wi,Wc,Wo and bf , bi, bc, bo are model parameters.

Considering that the ensemble performance depends on the
individual base models’ predictive capabilities under specific
inputs, this section applies LSTM to learn a global contextual
representation of the time series, which is then used to generate
a dynamic fusion weight matrix for the three base models, as
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illustrated in Fig. 3. Specifically, the embedded input sequence
is denoted as X ∈ RT×demb , where T is the sequence length
and demb is the embedding dimension per time step. This
sequence serves as input to the LSTM network, which updates
its hidden states at each time step and finally outputs the
hidden state at the last time step hT ∈ Rdh , representing the
global sequence embedding.

Subsequently, a set of fully connected layers project hT into
a weight matrix space of dimension 3×7, where the rows cor-
respond to the three base models and the columns correspond
to the seven gas variables. To ensure that the weights for the
three models sum to 1 for each gas dimension, a Softmax
function is applied to constrain the weight distribution:

W = Softmax(MLP(hT )) ∈ R3×7

3∑
m=1

Wm,j = 1
(29)

Finally, the predictions ŷ
(j)
t,m for the j-th gas by the m-th

base model at time step t are weighted and fused according
to the dynamic weighting matrix to yield the final prediction
output:

ŷ
(j)
t =

3∑
m=1

Wm,j · ŷ(j)t,m (30)

This mechanism effectively implements a globally-aware
weighted function mapping that dynamically assigns higher
weights to the most predictive models at each time step,
overcoming the limitations of fixed fusion strategies in time
series modeling. The LSTM-based dynamic weighting predic-
tion module is also optimized using the MSE loss function.

III. EXPERIMENTS

A. Experimental Protocol

Dataset. To comprehensively validate the proposed model’s
capability in modeling and generalizing over complex multi-
variate time series data, this study utilizes dissolved gas con-
centration monitoring data collected from transformer online
monitoring systems across multiple regions in China. The
dataset encompasses a total of 37 representative substations
and 471 high-voltage transmission lines nationwide, with data
acquisition spanning multiple recent years. This broad spatial
and temporal coverage grants the dataset strong representa-
tiveness and practical applicability. Each transmission line
is equipped with high-precision sensor devices that record
dissolved gas concentrations at an hourly frequency. It includes
seven key gas components: H2, CH4, C2H2, C2H4, C2H6, CO,
and CO2. After cleaning and normalization, over 2.56 million
valid samples were obtained.

To align with model input requirements, a sliding window
of length 32 and stride 16 was used to generate input-output
pairs. The dataset was split into training, validation, and test
sets at an 8:1:1 ratio, with the best validation model used for
final testing.

Evaluation Metrics. To comprehensively assess the perfor-
mance of the proposed forecasting model in multivariate time

TABLE I
COMPARISON OF RMSE RESULTS OF DIFFERENT PREDICTION MODELS.

Model H2 CH4 C2H6 C2H4 C2H2 CO CO2

LSTM 1.90 9.07 5.87 1.08 2.81 34.12 151.77
GRU 2.19 4.31 4.02 1.42 1.20 38.09 155.69

Transformer 2.15 2.90 4.38 0.69 1.78 23.19 80.23
Ours 1.41 1.07 3.74 0.42 1.18 19.54 63.11

TABLE II
COMPARISON OF MAE RESULTS OF DIFFERENT PREDICTION MODELS.

Model H2 CH4 C2H6 C2H4 C2H2 CO CO2

LSTM 0.97 2.17 1.64 0.36 0.81 17.72 73.51
GRU 1.05 1.00 1.08 0.43 0.35 19.77 74.87

Transformer 0.84 0.72 0.50 0.21 0.51 9.02 32.27
Ours 0.62 0.45 0.43 0.16 0.34 7.42 25.29

series prediction tasks, this study adopts three representative
regression metrics: Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). These indicators evaluate the deviation between
the predicted values and the true observations from the per-
spectives of squared error, absolute error, and relative error,
respectively. The definitions are as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2 (31)

MAE =
1

N

N∑
i=1

|ŷi − yi| (32)

MAPE =
100%

N

N∑
i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣ (33)

Here, ŷi and yi denote the predicted and true values of a single
gas variable at time step i, and N represents the total number
of samples.

Implementation Details. For model training, the Adam
optimizer [13] is employed for all components. Both the
deep regression model and the dynamic weighting prediction
module are trained with an initial learning rate of 1 × 10−4.
The total number of training epochs is set to 500, with an early
stopping strategy applied to prevent overfitting. The patience
for early stopping is set to 50 epochs. The Transformer encoder
in the deep regression model consists of 4 stacked layers,
each with an embedding dimension of 128 and 8 attention
heads. Both decoder branches (reconstruction and regression)
are also composed of 4 stacked layers. The dynamic weighting
prediction module is implemented with a single-layer LSTM,
using an embedding dimension of 128. During training, the
batch size is set to 256.

Baselines. To comprehensively evaluate the performance
of the proposed multi-source dynamic weighting prediction
model on the multivariate time-series regression task of dis-
solved gas concentrations in transformer oil, a series of
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TABLE III
COMPARISON OF MAPE RESULTS OF DIFFERENT PREDICTION MODELS.

(UNIT: %)

Model H2 CH4 C2H6 C2H4 C2H2 CO CO2

LSTM 11.83 37.79 42.50 9.09 2.69 7.45 6.70
GRU 11.54 15.09 29.04 12.50 3.60 8.03 7.01

Transformer 10.41 10.70 9.24 4.77 2.78 4.61 3.40
Ours 7.31 6.97 8.58 4.12 2.57 3.15 2.56

comparative experiments were conducted. Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and Trans-
former, which are widely adopted in sequence modeling, were
selected as baseline models. To ensure fairness and reliability
of the evaluation, all models were trained under identical
configurations, with consistent input-output formats.

B. Evaluation Results

First, the RMSE comparison results are shown in Table I.
The proposed model consistently achieved superior perfor-
mance across all gas prediction tasks. In particular, for gases
such as H2, CH4, and CO2, the RMSE of the dynamic weight-
ing model was significantly lower than that of the baseline
models. For instance, in the case of CO2, the proposed model
attained an RMSE of 63.11, while LSTM and GRU reached
151.77 and 155.69 respectively. This indicates the proposed
model’s superior ability to capture the underlying data patterns
and reduce prediction error. While the Transformer model also
demonstrated promising accuracy across most gas types, it still
fell short compared to the dynamic weighting approach. These
results underscore the strong modeling capability and accuracy
of our method in complex time-series regression tasks.

Similarly, as shown in Table II, the Mean Absolute Er-
ror (MAE) results further confirm the outstanding prediction
performance of the dynamic weighting model. It not only
effectively captures the central trend of the data but also
maintains stable prediction performance across most time
steps. Compared to the baseline models, which exhibited
larger deviations for some gases, the proposed model achieved
better consistency in prediction error across all variables. This
demonstrates its capability to adapt to heterogeneous structures
in multivariate data.

MAPE, as a dimensionless metric, reflects model perfor-
mance from the perspective of relative error. The comparative
results in Table III indicate that the proposed model consis-
tently achieved significantly lower MAPE values across all gas
types, outperforming LSTM and Transformer. In particular, for
critical gases such as CH4, CO, and CO2, the MAPE values
were consistently below 3%, highlighting the model’s ability
to maintain high precision. This not only ensures fair cross-
variable comparability but also affirms the practical feasibility
of our method in high-accuracy industrial applications.

In summary, the proposed multi-source dynamic weight-
ing prediction model achieved remarkable performance im-
provements across all evaluation metrics. Its superior overall
capability in modeling high-dimensional, strongly coupled

multivariate time series validates its potential for practical
deployment in dissolved gas monitoring and fault trend pre-
diction in power transformer systems.

IV. CONCLUSION

This paper proposes a novel ensemble modeling ap-
proach based on a multivariate dynamic weighting mechanism
for time-series prediction of dissolved gas concentrations
in ultra-high-voltage transformer oil. By integrating linear,
fuzzy approximation, and deep dynamic sub-models, a multi-
perspective prediction framework is constructed. An LSTM-
based dynamic weighting module adaptively adjusts model
contributions over time, addressing challenges related to high-
dimensional heterogeneity and dynamic complexity in gas
data. Experiments on real-world datasets show that the pro-
posed method consistently outperforms mainstream baselines,
validating its effectiveness and adaptability in complex time-
series scenarios. Future research will explore adaptive feature
selection, lightweight deep networks, and graph-based mod-
eling to further enhance multi-source data fusion and fault
prediction under diverse operating conditions, contributing to
more intelligent and efficient power equipment monitoring.
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