979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Latency-Aware Optimization Strategies for Efficient
LLMs Serving on Heterogeneous Accelerators

Chaelyn Lee
SoC Platform Research Center
Korea Electronics Technology Institute
Seongnam-si, Republic of Korea
mylynchae @keti.re.kr

Abstract—Large Language Models (LLMs) are increasingly
deployed in Latency-critical applications, where user experience
is strongly influenced by how quickly the model produces its first
token and maintains consistent token generation. In practical
deployments, these latency requirements are often formalized
as Service-Level Objectives (SLO) that set strict bounds on
response times. Meeting such objectives requires careful control
of both time-to-first-token (TTFT) and token-by-token latency
(TBT). In this study, we evaluate three open-source LLMs on
GPU, AWS Inferentia2, and Google Cloud TPU vSe. We profile
latency across varying batch sizes and input prompt lengths, and
leverage these profiles to identify optimal device configurations
that maximize RPS while satisfying SLO requirements. We
further explore disaggregated configurations that assign prefill
and decode stages to different devices, leveraging device-specific
strengths for improved efficiency. Our experiments show that
disaggregated optimization consistently improves Requests Per
Second (RPS) over GPU-only baselines, achieving up to nearly
2x improvement depending in certain workloads. These find-
ings highlight the importance of latency-aware optimization in
heterogeneous environments and establish design principles that
clarify how prefill and decode stages should be distributed across
devices to maximize throughput while satisfying SLOs in large-
scale LLM serving systems.

Index Terms—Large Language Models, Serving, Optimization,
Heterogeneous, Service Level Objectives

I. INTRODUCTION

As LLM-based services proliferate across consumer and
enterprise domains, LLM inference has emerged as a critical
systems challenge in modern computing. Deploying such
large-scale models at production scale requires substantial
computational resources, driving the adoption of heteroge-
neous hardware accelerators for LLM serving. In addition to
GPUs, major cloud providers now deploy specialized neural
processing units (NPUs) and custom accelerators to support
LLM inference. These devices exhibit diverse architectural
and performance characteristics, necessitating device-specific
serving strategies rather than a one-size-fits-all approach [1].
GPUs excel at large-scale parallel computation and dense
matrix multiplications, though often at the cost of high power
consumption. In contrast, NPUs such as AWS Inferentia are
optimized for vectorized tensor operations and power-efficient
inference, while Google TPUs employ systolic array architec-
tures to efficiently handle large-scale training and inference
workloads. Because these accelerators differ architecturally,

1978

*Seokhun Jeon
SoC Platform Research Center
Korea Electronics Technology Institute
Seongnam-si, Republic of Korea
seokhun.jeon @keti.re.kr

maximizing performance in heterogeneous environments is
essential. Maximizing performance across these accelerators
requires tailored inference strategies. However, despite these
advances, meeting SLO remains a challenge [2]. Users ex-
pect highly responsive interactions with minimal latency. The
perceived quality of LLM services is strongly influenced by
latency metrics, including TTFT, TBT, and End-to-End (E2E)
latency [3]. These metrics depend on the performance of
two major inference stages. The prefill stage is typically
compute-intensive, while the decoding stage is often con-
strained by memory bandwidth [4] [5]. The prefill stage
is typically compute-intensive, while the decoding stage is
often constrained by memory bandwidth [6]. Consequently,
bottlenecks arise differently across hardware platforms at
each step, making disaggregated optimization of prefill and
decoding essential. In this study, we present a comprehensive
evaluation of LLM service performance across heterogeneous
accelerator platforms. We study three representative LLMs on
three accelerators and measure latency characteristics under di-
verse serving conditions. Our experiments systematically vary
parameters such as prompt length and batch size, analyzing
their impact on TTFT, TBT. Based on these findings, we
propose efficient allocation and optimization strategies that
identify optimal strategies to maximize responsiveness while
ensuring compliance with user-facing SLO.

II. LATENCY-AWARE OPTIMIZATION ON HETEROGENEOUS
ACCELERATORS

A. Definition

SLO represent formally defined latency targets that LLM
services must meet to ensure responsive and consistent user
interactions. These objectives specify thresholds on critical
latency metrics that directly determine perceived service qual-
ity. SLO establish a contract between the system and its
users, ensuring that interactions remain within acceptable
latency bounds [7]. In our study, these definitions serve as
the foundation for evaluating LLM inference across hetero-
geneous accelerators. Since different devices exhibit distinct
performance characteristics in the prefill and decoding stages,
achieving high RPS while satisfying SLO is essential to un-
derstanding the practical viability of each hardware platform.
By analyzing how well various model-device pairings sustain

ICTC 2025

latency guarantees, we are able to identify configurations that
not only maximize responsiveness but also demonstrate the
real-world importance of latency-aware optimization in large-
scale LLM services.

B. Optimization Strategy

Given a set of candidate devices, each with different ar-
chitectural strengths, our goal is to determine the optimal
assignment of the prefill and decode stages for each workload
configuration. A workload is characterized by the model type,
input prompt length p, and batch size b. For each workload,
we seek a device pair (dpre i, dgecode) that maximizes RPS
subject to SLO constraints [9].

C. Latency Measurements

To enable latency-aware optimization, we first conduct a
measurement phase across different model-device configu-
rations. For each candidate device, we systematically vary
prompt length p and batch size b, and record latency for both
the prefill and decode stages:

(p,b,model,device) — {ITFT,TBT}.

These measurements capture device-specific performance
characteristics and provide the basis for subsequent evaluation.
Using these results, we evaluate each possible prefill-decode
pairing (dprefin, ddecode) Under the given workload. A request
is considered successful only if both TTFT and TBT remain
within their respective SLO thresholds. We then derive the
effective throughput as SLO-compliant Requests per Second
(RPS):
NSUCCCSS

b
T‘total

where Ngyccess 15 the number of requests satisfying both TTFT
and TBT SLOs, and Tiyy is the elapsed time. By comparing
RPSsro across heterogeneous prefill-decode combinations,
we identify the mappings that minimize SLO violations and
achieve near-optimal responsiveness. As a baseline, we report
results for a single-GPU configuration, against which all
heterogeneous strategies are evaluated.

RPSsr0 =

III. EXPERIMENTS

We evaluate LLM inference latency on heterogeneous ac-
celerators by measuring TTFT and TBT under diverse exper-
imental conditions and analyzing their impact on SLO. Based
on these measurements, we assess SLO-compliant RPS and
explore prefill-decode allocation strategies across devices.

TABLE I: Experimental Settings

Category Details

Models Llama-3.2-1B, Llama-3.2-3B, Mistral-7B
Devices A6000Ada, AWS Inferentia2, TPU v5e
Prompt length 128, 512, 1024

Output length 128

Repetitions 100 (warmup-20)

Latency Metrics | TTFT, TBT, Percentiles

Batch Size 1,4

- Py ANS - TPU

Lama-3.2-18 / Prefill (TTFT) Liama-3.2-38 / Prefill (TTFT) Mistral-78-Instruct-v0.3 / Prefill (TTFT)

Batch
700 1 £ 851
==

Batch
851
2 854

-
]
7
g
7
7
g
7
7
]
d
7

128 s12 1024 128 s12 1024 128 s12 1024
Input Tokens Input Tokens

((b)) TTFT(3B) ((c)) TTFT(7B)

Llama-3.2-38 / Decode (TBT) Mistral-78-Instruct-v0.3 / Decode (TBT)

(()) TTFT(1B)

Llama-3.2-18 / Decode (TBT)

Length
== uzs

Length
= uzs

o3 1024 o3 1024

K
K
&

s

7
7
g

A
51 BS4

Batch Size

((d)) TBT(1B) () TBT(7B)

Fig. 1: TTFT (Prefill) and TBT (Decode) latency across
different model sizes.

Batch size

((e)) TBT(3B)

A. Settings

Table I summarizes the experimental setup. We evaluate
three open-source decoder-only LLMs (Llama-3.2-1B, Llama-
3.2-3B, and Mistral-7B) on three heterogeneous hardware
accelerators: NVIDIA A6000 Ada (GPU), AWS Inferentia2,
and Google Cloud TPU v5e. These devices represent diverse
architectural trade-offs in compute throughput, memory band-
width, and power efficiency. For each experiment, we perform
20 warm-up runs and 100 measured runs to ensure statistical
stability. Input prompt lengths are varied across 128, 512,
and 1024 tokens, while the output length is fixed to maintain
consistent decode workloads. We evaluate both batch sizes
of 1 and 4 to capture scaling effects, and focus our latency
measurements on TTFT and TBT.

B. Results

1) Latency Measurements under Different Configurations:
Figure 1 shows TTFT (Prefill) and TBT (Decode) across
models, batch sizes, and input lengths. TTFT grows sharply
with longer prompts and larger batches, while TBT is more
stable but sensitive to output length and device capacity. These
device-dependent scaling patterns underline the importance
of latency characterization for SLO compliance and optimal
prefill-decode allocation.

2) Proposal Optimal Strategy: Figure 2 compares the RPS
achieved under baseline (GPU-only) setups and heteroge-
neous disaggregated configurations across three representative
models under varying batch sizes and input lengths. Unified
baselines serve as references where both prefill and decode
stages are executed on a single GPU. In contrast, disaggre-
gated configurations explore heterogeneous device pairings,
selecting the best-performing combination for each workload.
The results reveal that heterogeneous optimization consis-
tently improves throughput relative to GPU-only baselines.
For Llama-3.2-1B, disaggregated configurations nearly double

1979

meta-llama_Llama-3.2-1B

meta-llama_Llama-3.2-3B

Mistralai_Mistral-7B-Instruct-v0.3

Batch Size + Devices + Role
W bs1 (GPU+GPU, baseline)
wm bs1 (GPU+AWS, best)
12 M bs4 (GPU+GPU, baseline)
BN bsd (GPU+AWS, best)

0.4

0.2

0.0

512
Input Tokens

Input Tokens

Batch Size + Devices + Role
B8 bs1 (GPU+GPU, baseline)
@7 bsl (GPU+GPU, best)
W= bs4 (GPU+GPU, baseline)
B bsd (TPU+GPU, best)

Batch Size + Devices + Role
w8 bs1 (GPU+GPU, baseline)
#7 bs1 (GPU+AWS, best)
W bs4 (GPU+GPU, baseline)
N bsd (TPU+AWS, best)

512 1024 128 512 1024
Input Tokens

Fig. 2: RPS comparison across models, batch sizes, and device combinations.

the RPS across all input lengths, with the gap becoming
more pronounced at batch size 1. Similar improvements are
observed for Llama-3.2-3B, where GPU+AWS pairings sig-
nificantly outperform GPU-only execution under both small
and large batch sizes. Mistral-7B is more efficient on a single
device than under heterogeneous configurations. A recurring
pattern across models is that GPU tends to be the preferred
choice for prefill, while alternative accelerators, such as AWS
devices, provide gains in the decode stage. This reflects the
compute-intensive nature of prefill versus the memory-bound
characteristics of decoding. Overall, the figure demonstrates
that disaggregated configurations substantially improve RPS
while satisfying all SLO constraints, and result in more than
99% SLO compliance, confirming the importance of latency-
aware optimization in heterogeneous environments.

IV. CONCLUSION

In this study, we analyzed the latency behavior of LLM
inference across heterogeneous accelerators by profiling TTFT
and TBT in detail. From these measurements, we derived
RPS as an SLO-aware efficiency metric that captures effective
throughput beyond raw performance. By exploring optimiza-
tion strategies that allocate prefill and decode across GPU,
AWS Inferentia2, and TPU v5e, we demonstrated that no
single device delivers optimal efficiency under all workload
conditions. Instead, the best performance emerges from select-
ing model-device pairings tailored to input length, batch size,
and model scale. Our experiments show that heterogeneous
(disaggregated) optimization consistently improves RPS com-
pared to GPU-only baselines, in some cases achieving more
than an up to nearly 2x improvement. These results confirm
the importance of latency-aware optimization in large-scale
LLM serving, where disaggregated device strategy strengths
can be leveraged to maximize responsiveness while satisfying
SLO requirements.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. RS-2024-

00402898, Simulation-based High-speed/High-Accuracy Data
Center Workload/System Analysis Platform).

REFERENCES

[1] Z. Chen et al., “Large Language Model Inference Acceleration,” arXiv
preprint arXiv:2410.04466, Jun. 2024.

[2] “Revisiting SLO and goodput metrics in LLM Serving,” arXiv preprint
arXiv:2410.14257, Oct. 2024.

[3] A. Agrawal et al., “Metron: Holistic Performance Evaluation Framework
for LLM Inference Systems,” arXiv preprint arXiv:2407.07000, Jul.
2024.

[4] “ADOR: A Design Exploration Framework for LLM Serving with
Enhanced Latency and Throughput,” arXiv preprint arXiv:2503.04253,
Mar. 2025.

[5] J. S. R. Prabhu er al., “Benchmarking Edge AI Platforms for High-
Performance ML,” arXiv preprint arXiv:2409.14803, Sep. 2024.

[6] H. Zhang et al., “SOLA: Optimizing SLO Attainment for Large Lan-
guage Model Serving,” in Proc. IEEE ICDCS, 2024.

[71 Y. Gu er al., “S-LoRA: Serving Thousands of Concurrent LoRA
Adapters,” in Proc. MLSys, 2024.

[8] M. Kwon et al., “vLLM: Easy, Fast, and Cheap LLM Serving with
PagedAttention,” in Proc. SOSP, 2023.

[9]1 X. Han et al., “Sarathi-Serve: Efficient LLM Inference by Exploiting the

Distinct Characteristics of Prefill and Decode,” in Proc. OSDI, 2024.

Y. Lin et al., “Orca: A Distributed Serving System for Transformer

Inference,” in Proc. SOSP, 2023.

[10]

1980

