979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Extending gem5 for Accurate PCle-Based Device
Modeling in Heterogeneous Architectures

Seunghyun Song

Junehyuk Boo

Yeongwoo Jang

Electrical and Computer Engineering Electrical and Computer Engineering Electrical and Computer Engineering

Seoul National University
Seoul, Republic of Korea
seunghyun.song @snu.ac.kr

Daye Jung
Electrical and Computer Engineering
Seoul National University
Seoul, Republic of Korea
daye.jung@snu.ac.kr

Abstract—The growing demand for heterogeneous comput-
ing in AI workloads has heightened the need for efficient
CPU-accelerator communication. For this purpose, PCI Express
(PCIe) has emerged as the dominant interconnect in recent sys-
tems. However, current architectural simulators provide limited
support for accurate performance evaluation of PCle devices. In
this paper, we present a guideline to extend the gem5 simulator
for arbitrary PCle device integration. While gem5 is widely
used for CPU simulation and architectural exploration, it only
supports a limited set of PCI devices and lacks a standardized
framework. By analyzing the mechanisms of gem5, particularly
its support for AMD GPUs, we identify key components involved
in communication: MMIO, DMA, and interrupts. Based on these
insights, we propose a methodology for integrating arbitrary
PCle device simulators into gemS5, enabling development of
heterogeneous systems.

I. INTRODUCTION

Modern computer systems have heterogeneous architec-
tures, where CPUs operate together with a variety of ac-
celerators and I/O devices. This trend is especially driven
by the rapid growth of Al workloads, making data transfer
between CPUs and I/O devices an important factor. Among
the interconnects, Peripheral Component Interconnect Express
(PClIe) is widely used as an essential interface for connecting
devices to CPUs.

Simulators can play a crucial role in the architectural
exploration of heterogeneous systems. They allow researchers
to evaluate the system performance without the need for
costly and time-consuming hardware implementation. Among
various simulators, gem5S [1] is one of the most widely used
CPU simulators in the computer architecture community. It
has been extensively adopted in both academia and industry
for its open-source nature and flexibility. It is renowned for
its flexibility and extensibility, allowing users to model a wide
range of CPU architectures.

However, modeling heterogeneous systems in gem5 still
poses challenges. While gem5 provides a robust framework

Seoul National University
Seoul, Republic of Korea
junehyuk @snu.ac.kr

1974

Seoul National University
Seoul, Republic of Korea
yeongwoo.jang @snu.ac.kr

Jangwoo Kim
Electrical and Computer Engineering
Seoul National University
Seoul, Republic of Korea
jangwoo@snu.ac.kr

for CPU modeling, it lacks comprehensive support for PCle-
based devices. Although gem5 provides models for several
I/O devices, they are limited to specific implementations. As
new device simulators continue to emerge, integrating them
into the gem5 ecosystem requires additional effort. Therefore,
a general-purpose framework that allows seamless integration
of arbitrary PCle device simulators into gemS5 is necessary.

In this paper, we present an extension to gem5 that en-
ables accurate modeling of PCle-based devices. To this end,
we analyze gem5 CPU’s communication mechanisms, with
a particular focus on its internal support for AMD GPUs.
Finally, we propose a methodology for integrating arbitrary
PCle device simulators into gem5.

II. BACKGROUND
A. The gem5 simulator

gem5 is a widely used computer system simulator capable of
modeling both microarchitecture-level and system-level behav-
ior. It is mainly written in C++ and Python, allowing users to
define complex system configurations and behaviors. gem5’s
simulation engine is built on a discrete-event simulation model,
where events are scheduled to occur at specific times. It
supports two main execution modes that enables efficient and
reasonably accurate modeling of complex computer systems.
First, system emulation (SE) mode emulates system calls for
faster simulation but lacks accurate modeling of OS interac-
tions. Second, full system (FS) mode boots a real OS using
a disk image and kernel, providing more accurate system
behavior at the cost of complexity and slower speed.

B. PCle overview

PCle is a high-speed interface for connecting various de-
vices, such as GPUs, NPUs, NICs, SSDs, and other periph-
erals, to CPUs. It is composed of a root complex, PCle
switches, and endpoints. The root complex connects directly to
CPU memory and manages PCle traffic, while PCle switches

ICTC 2025

allow multiple devices to share a PCle hierarchy. Endpoints
are devices that communicate with the root complex, such
as GPUs. PClIe devices communicate with the CPU through
mechanisms like memory-mapped I/O (MMIO), direct mem-
ory access (DMA), and interrupts.

Communications between the host CPU and a PCle device
typically involves two main phases. First, to efficiently com-
municate with the device, the device driver initially allocates
DMA buffers in the host memory. To send a task to the device,
the CPU writes commands in the command queue and signals
the hardware with an MMIO write to the device memory (i.e.,
BAR region). This MMIO write is known as the doorbell, and
it tells the device that new commands are ready. When the
device receives the doorbell, it uses its DMA engine to read
the commands in the command queue and begin the workload.

Next, once the device completes the task, it notifies the
CPU. It does this by writing a completion record into a
completion queue, also in the DMA buffer. To notify the
CPU, the device can send an interrupt, which triggers the
driver to read the result from the completion queue. For
higher performance, the driver may skip interrupts and poll
the completion queue instead.

C. PCle model in gem5

Currently, gem5 implements PCle devices through a PCI
bridge-based model. Key existing models include NICs, IDE
controllers, UARTs, DMA engines. These models are de-
signed to work with gem5’s existing CPU communication
mechanisms, allowing for basic PCle functionality. However,
these models are often limited to specific implementations
and lack general support for integrating arbitrary PCle device
simulators.

III. MOTIVATION
A. Limitations of gem5’s current PCle model

In gem5, PCle devices are modeled based on a simple PCI
bridge, which does not accurately reflect PCle architectures.
The devices are directly connected to the I/O bus rather than
PCle’s hierarchical, point-to-point topology. Although PCle
includes key components such as root complex, PCle switches,
and endpoints, gem5’s current model lacks the ability to
represent these components accurately. To model PCle-based
devices accurately, some recent studies have proposed works
to extend gem5’s PCI model for PCle devices [2].

B. Integration needs for external PCle device simulators

As heterogeneous architectures are becoming mainstream,
communication between GPUs, NPUs, and NICs have a sig-
nificant impact on overall system performance. In recent Al
workloads, data transfer between the CPU and GPU becomes
a clear bottleneck, highlighting the need for accurate PCle
modeling. While gem5 supports a few internal devices, it lacks
a flexible interface for integrating external PCle simulators.
To address this problem, we propose a solution that enables
architects to connect arbitrary PCle simulators to gem5 with
minimal modifications to its code.

IV. PROPOSED SOLUTION

We analyze how gem5 supports AMD GPU integration in
its full-system mode. A simple PyTorch GEMM application
is executed. We trace log outputs and examine how gem5
binaries and Python files co-operate to instantiate and run
the GPU system. We analyze the PCI setup sequence, MMIO
mappings, and DMA interactions between the CPU and GPU.
Then, we generalize this communication flow to create a
reusable methodology for integrating PCle devices into gemS5.

A. gem5’s AMD GPU integration

Recently, the full-system mode of gem5 was enabled for
AMD GPU integration, where a real operating system is
booted. While the CPU part of gemS5 is accelerated by using
the Kernel-based Virtual Machine (KVM) for fast execution,
the GPU model is simulated in software.

system._dma_ports.append (gpu_hsapp)

| system._dma_ports.append (gpu_cmd_proc)

;| system._dma_ports.append(system.pc.
south_bridge.gpu)

for sdma in sdma_engines:
system._dma_ports.append (sdma)

gpu_hsapp.pio = system.iobus.mem_side_ports

s gpu_cmd_proc.pio = system.iobus.
mem_side_ports

system.pc.south_bridge.gpu.pio = system.
iobus.mem_side_ports

0| for sdma in sdma_engines:

1 sdma.pio = system.iobus.

mem_side_protocols

Listing 1. Python code for GPU setup

Initially, the GPU is connected to the CPU by binding
necessary ports. Programmable I/O (PIO) ports are connected
to the CPU’s southbridge I/O bus for memory-mapped 1/O
(MMIO) access. Also, DMA ports are connected to the CPU’s
memory controller for data and parameter transfer.

CpPU MMIO write GPU
GPU Command Compute
Memory Processor Units
i | HSA AQL fetch HSA Packet SDMA % % %
LQueue Processor Engine
DMA

Fig. 1. gem5’s AMD GPU kernel launch sequence.

After the GPU is connected, the communication between
the CPU and GPU is established through MMIO and DMA.
Figure 1 illustrates the communication flow during a kernel
launch. The GPU has a Heterogeneous System Architecture
(HSA) interface, which allows the CPU to manage GPU re-
sources and launch kernels. The HSA queue is used to receive
Architected Queuing Language (AQL) packets from the CPU
for kernel execution. The HSA packet processor polls the HSA
queue and fetches AQL packets by periodically performing
PCIe DMA reads. The packets are then decoded by the GPU’s

1975

Gemb5 GPU Simulator

Host memory DoorbellMMIO | | PCle BAR | | compute
Start GPU sim. I region units
Data | cmd/ cpl @ |V—‘ minln
T ueue Interrupt DMA
4 Resume CPU sim. engine aoog

Fig. 2. Overview of our solution.

command processor, which executes the corresponding kernels
to activate computing units. The data and parameters for the
kernel execution are transferred from the CPU to the GPU
through DMA. Finally, after the kernel execution the GPU
send an interrupt to the CPU to notify completion.

B. PCle device integration methodology

From the thorough analysis of gem5’s AMD GPU model,
we propose a general methodology for integrating arbitrary
PCle device simulators into gemS5. Our approach is built
around a new component within gem5 that acts as an interface,
or bridge, between the host system and the external device
simulator. Figure 2 shows the overview of our solution.

This bridge solves the two main challenges of integration:
knowing when to start the simulation and when to signal
its completion. First, to start the device, the bridge listens
for specific doorbell MMIO writes from the CPU. When the
bridge detects this signal, it commands the external device
simulator to begin its task. Second, to handle completions,
the device simulator notifies the bridge when it finishes. The
bridge then informs the host CPU by sending an interrupt
or writing to a completion queue. For DMA operations, our
framework fully reuses gem5’s existing memory system and
the PCI model.

The modifications needed for the device simulator is to
accept external commands from our gem5S bridge, such as
start_simulation () and check_status (), to con-
trol its execution. In addition, it has to follow the gem5’s DMA
path instead of its own DMA model.

The following section describes the core architectural com-
ponents and implementation details required for integrating
such devices into gem5’s full-system simulation framework.

1) Implementing the execution trigger: To start the device
simulation at the correct time, our bridge model must first
identify the specific doorbell MMIO write that triggers the
hardware execution. We determine this doorbell address using
one of two methods. First, the most direct way is by consulting
the device’s official specifications or an open-source driver, if
available. These sources typically document the key register
address. Second, if the device protocol is unknown, we use
a tracing-based approach. We run a simple, known workload
on the real hardware (e.g., that completes immediately) and
use a tool like mmiotrace [3] to log all MMIOs. The doorbell
is then identified as the specific MMIO write that acts as the
trigger for the work. This trigger is the write that consistently
occurs right before the device becomes active, and eventually
sends a completion interrupt.

In either case, the bridge model monitors for a write to
this specific address from gem5. When the doorbell write
is detected, the bridge records its timestamp and starts the
external device simulator to begin its execution.

2) Implementing device completion: Handling task com-
pletion follows a logic similar to the execution trigger. When
the external device simulator finishes its work, it notifies the
bridge model inside gem5. The bridge is then responsible for
alerting the host CPU so it can proceed. This notification
process involves two steps: (1) writing a completion record
to the completion queue and (2) sending an interrupt to the
CPU. Just like the doorbell, the exact completion protocol,
such as the format of the completion record and the specific
conditions for sending an interrupt, is determined either from
device documentation and open-source drivers, or by analyzing
traces from real hardware execution.

3) DMA operations: To support DMA operations, the de-
vice simulator should implement logic for initiating memory
reads and writes to the CPU’s memory. In gem5, this is
performed using the dmaRead() and dmaWrite() functions,
which operate over a master port (commonly named dmaPort).
These functions take a memory address, a buffer pointer,
and a completion event callback. The DMA engine must
track outstanding transactions and signal completion either
internally or through MMIO-accessible flags. The MemObject
subclass typically includes a port connection:

Port &getMasterPort (const std::string &name
, PortID) override {
if (name ==) return dmaPort;
return MemObject::getMasterPort (name,
id);

Listing 2. Port connection in C++

Similarly, the slave ports should be registered and connected
during system initialization.

V. CONCLUSION

This work presents an approach that allows arbitrary PCle
device simulators to be integrated into gemS with minimal
modifications to the code. Our methodology enables more ac-
curate modeling of modern heterogeneous computing systems
with PCle-based devices. Future work includes validation of
the proposed framework through detailed case studies and
performance evaluations. By improving PCle modeling in
gem5, we move one step closer to enabling realistic simulation
and performance analysis of modern Al-driven heterogeneous
systems.

ACKNOWLEDGMENTS

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean Government (MSIT) (No.RS-
2024-00402898, Simulation-based High-speed/High-accuracy
Data Center Workload/System Analysis Platform). We also
appreciate the support from Automation and Systems Research
Institute (ASRI) and Interuniversity Semiconductor Research

1976

Center (ISRC) at Seoul National University. The EDA tool
was supported by the IC Design Education Center (IDEC),
Korea.

REFERENCES

[1] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
M. Moreto, T. Miick, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris,
L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,
M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,
T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Eder F. Zulian, “The gem5 simulator: Version 20.0+,” 2020. [Online].
Available: https://arxiv.org/abs/2007.03152

[2] M. Alian, K. P. Srinivasan, and N. S. Kim, “Simulating pci-express
interconnect for future system exploration,” in 2018 IEEE International
Symposium on Workload Characterization (IISWC), 2018, pp. 168-178.

[3] “mmiotrace: In-kernel memory-mapped i/o tracing.”
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt.

1977

