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Abstract—Serverless computing, such as Function-as-a-Service
(FaaS), automates infrastructure-level provisioning, making it
developer-friendly. The major overhead of FaaS, namely cold
start problem, can be mitigated by leveraging container caching.
FaaS platforms have been continuously optimized for renowned
workload patterns such as bursty arrivals and periodic exe-
cutions. However, the end-to-end (E2E) latency of concurrent
serverless applications can be further reduced by exploiting
microarchitectural state reuse with the above optimizations.

In this paper, we propose a novel mechanism that optimizes
the execution of functions by maximizing the reuse of microar-
chitectural states through the back-to-back (B2B) execution. A
lightweight classifier categorizes deployed functions based on
their microarchitectural characteristics. Core pools are then
designated, and CPU pinning decisions are made within each
pool using metadata from the classifier and runtime function
queues. Based on empirical case studies, the proposed mechanism
improves E2E latency up to 5% from the baseline.

Index Terms—Cloud computing, Computer system organiza-
tion, Serverless, FaaS, Microarchitecture

I. INTRODUCTION

Serverless computing is a developer-friendly cloud
paradigm that offloads backend management responsibilities
to the service provider. Function-as-a-Service (FaaS), a form
of serverless computing, executes the application in a chain of
functions, in contrast to the traditional monolithic application
models. FaaS workloads are typically short-running and short-
lived. To accommodate these properties, function executions
are carried out within ephemeral and stateless sandboxes.
Numerous serverless platforms adopt containerization to
encapsulate and isolate functions.

Processes inherently share stateful resources, and repeatedly
invoked functions often reuse function-specific data such as
libraries and handler codes. However, in FaaS environments,
instances of heterogeneous functions interleave at the same
node, consequently thrashing shared or function-specific mi-
croarchitectural states and increasing the end-to-end (E2E)
latency of a service or the series of services. Figure 1
presents the execution time and cycles per instruction (CPI)
for 10 Python or Go-based functions-under-test (FUTs): au-
thentication, CNN inference, email service, Fibonacci, AES
encryption, matrix multiplication, chameleon, float operation,
image processing and reservation. The experiment uses the
remaining benchmark functions aside from the FUT as in-
terleaved functions, without utilizing external resource stress
tools. The inter-arrival time (IAT) sweep ranges from 100ms
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Fig. 1: Execution time and CPI under varying IAT, with
interleaved functions invoked following a Poisson distribution.

to 2000ms. As IAT increases, execution time increases signif-
icantly —by at least 110% and up to 150%—compared to the
IAT of 100ms. This overhead is attributed to microarchitectural
thrashing caused by function interleaving [1], which disrupts
the efficient use of the cache hierarchy. Our proposed function
orchestration design mitigates this degradation by improving
microarchitectural resource reuse across function invocations.

II. FUNCTION ORCHESTRATION DESIGN

Since B2B execution enables the reuse of microarchitectural
state, analyzing function-level resource usage is critical. Based
on this, we propose an orchestration model (Fig. 2) that
classifies functions and schedules them using core pools and
CPU pinning to preserve locality under high concurrency.

A. Microarchitectural Function Analysis and Classification

To characterize the microarchitectural behavior of each
function, L1/L2 data and instruction misses, as well as L3
cache misses, are collected across the IAT sweep using dummy
invocations and stored as metadata. Overall, cache misses
increase by at least 10% and up to 300% as IAT increases.
The absolute values and the increased cache miss percentage
of cache misses vary between functions, enabling function
classification based on both the execution time sensitivity to
IAT and the cache miss behavior. For example, CNNsrv and
ImgProc exhibit considerably high cache miss compared to
other functions and, consequently, show a small execution
time variance with respect to IAT, as depicted in Figure 1.
Therefore, they fall under the same category, expected to
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Fig. 2: Overall illustration of the mechanism and its interaction
with the FaaS platform and underlying infrastructure.

benefit less by B2B execution. In contrast, Auth and Fibo
demonstrate the opposite behavior, with greater sensitivity to
interleaving. These observations support the classification of
functions based on their microarchitectural characteristics.

B. Controller and Scheduler: Core Pool and CPU Pinning

The classification information and real-time function traffic
are jointly considered to determine core pools and apply
CPU pinning. Functions that leverage the most from B2B
execution are pinned to the dedicated CPUs to maximize
microarchitectural state reuse. CPU pinning is applied in con-
tainer granularity to preserve locality of the stateful resources
and reduce context-switching overhead, even in horizontally
scaled-out environments. On the other hand, functions with
low B2B execution sensitivity are scheduled without CPU
pinning to maintain scheduling flexibility.

Based on core pool assignments and CPU pinning decisions,
the scheduler reorders function invocations, prioritizing pinned
functions according to QoS requirements. Pinned functions are
necessarily executed with the least queuing delay, so they are
dispatched through a dedicated scheduling path. In particular,
high-priority pinned functions are routed to a separate queue,
while low-priority ones may tolerate a certain delay.

III. EVALUATION

A. Methodology and Workloads

All experiments are conducted on a dual-socket AMD
EPYC 7551 server, comprising two 32-core processors running
at 2GHz. Each core has a private 32 KB instruction and 64
KB data L1 cache and 512 KB L2 cache, while the system
shares a 64 MB L3 cache. With simultaneous multithreading
(SMT) enabled, the server runs Ubuntu 24.04.2 LTS. The
FaaS environment is deployed on Kubernetes (K8S) [2] using
the OpenFaaS framework, and hardware-level metrics are
collected using the perf, taskset and Linux cgroup utilities.

Functions under the scope are selected from FunctionBench
[3] and vSwarm [4], two widely used serverless benchmarking
suites. To better reflect realistic scenarios —particularly in

terms of function concurrency and periodicity— we adapt the
Azure Functions trace [5] for our experimental setup.

B. Experimental Results

For the experimental evaluation, the proposed schemes were
applied incrementally to observe the impact of each. Two
baseline configurations without core pooling or CPU pinning
were used, employing 5 and 10 cores, respectively. Figure 3
presents the normalized E2E latencies relative to the 5-core
baseline. Core pooling alone achieved average E2E speedups
of 3.1% (5-core) and 3.5% (10-core), while adding CPU
pinning further improved the speedups to 2.5% and 4.9%,
respectively. The 5-core environment was more sensitive to
scheduling policies: only one trace (Trace 5) showed improve-
ment when applying the additional pinning scheme. In con-
trast, the 10-core environment consistently achieved speedups
across all tested traces, demonstrating greater robustness to the
orchestration scheme.
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Fig. 3: E2E latency for different function traces for 10 and 5
cores. Core pooling and pinning are added to the baseline.

IV. CONCLUSION

FaaS workloads exhibit burstiness and repeated concurrent
invocations of identical functions, creating opportunities to ex-
ploit hot microarchitectural states. By assigning core pools and
applying CPU pinning per function, back-to-back executions
are maximized, reducing end-to-end latency. Evaluation shows
an average of 5% speedup for short-duration traces.
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