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Abstract—Neural Processing Units (NPUs) achieve efficient
inference using systolic arrays and scratch-pad memory (SPM),
but existing multi-tenant approaches incur high context-switch
overhead or resource underutilization. We propose an archi-
tecture–scheduler co-design that decouples execution from al-
location granularity and dynamically reallocates SPM resources.
Experimental results show reduced turnaround times and DRAM
accesses, balancing efficiency, fairness, and throughput.

Index Terms—Neural processing unit, multi-tenancy, spatial
sharing, scratch-pad memory, dynamic scheduling

I. INTRODUCTION

Neural Processing Units (NPUs) achieve exceptional energy
efficiency in cloud inference by coupling systolic arrays with
scratch-pad memory (SPM) for optimized matrix multipli-
cation [1], [4]. However, rigid tile sizes and static alloca-
tion cause compute underutilization in multi-tenant settings.
Temporal approaches like PREMA [2] incur context-switch
penalties from scratch-pad checkpoints, while spatial methods
like Planaria [3] impose layer-level scheduling, resulting in
idle resources and inter-model interference. These limitations
reflect a fundamental trade-off between locality and context-
switch responsiveness, worsening with larger tiles.

This paper introduces a co-designed architecture and
scheduling framework that resolves this tension through gran-
ularity decoupling. Our approach nests fine-grained execu-
tion sub-tiles within coarse-grained allocation tiles, preserving
locality while enabling rapid context switching. We com-
plement this with dynamic capacity-aware SPM allocation
that exploits heterogeneous memory sensitivity profiles, redis-
tributing capacity from saturated to memory-bound workloads.
Experimental evaluation demonstrates significant reductions
in turnaround time and DRAM traffic, validating improved
efficiency and fairness in multi-tenant neural processing.

II. BACKGROUND AND MOTIVATION

Neural Processing Units and Multi-tenancy Challenges.
Neural Processing Units (NPUs) achieve high efficiency
by pairing systolic arrays with scratch-pad memory (SPM),
streaming tiled matrices from DRAM for fast multiply-
accumulate operations. However, this rigidly couples tile sizes
and resource allocations to single workloads, causing under-
utilization of computation and memory bandwidth in diverse
cloud environments. Existing multi-tenant approaches [2],
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Fig. 1. Trade-off between context-switch overhead and DRAM accesses.
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Fig. 2. Performance sensitivity of AlexNet and MobileNet to SPM capacity.

[3] incur significant overhead, either from frequent context
switches (temporal sharing) or persistent inter-model interfer-
ence (spatial sharing).

Spatial Sharing Limitations. Spatial multi-tenant NPUs par-
tition systolic arrays into independent sub-arrays but suffer
from layer-level scheduling granularity that creates efficiency
bottlenecks. Each sub-array must complete entire layers before
relinquishing control, forcing schedulers to wait for all sub-
arrays before context switching. While this prevents mid-layer
starvation, it strands early-finishing tenants and leaves cores
idle during slowest layer drainage. The problem worsens with
larger tiles, where cores either idle or checkpoint to DRAM,
both adding latency and wasting resources.

Fundamental Trade-offs in Multi-tenant NPUs. Figure 1
shows that execution-tile width creates a critical trade-off
between on-chip reuse and context-switch agility. As tile
width grows from 32 to 512, DRAM transactions decrease
by 25% but context-switch cycles more than double beyond
width 256. Figure 2 reveals that static SPM partitioning
wastes capacity—MobileNet saturates at 2 MB while AlexNet
scales linearly in our 80 GB/s testbed. These findings moti-
vate architecture-scheduler co-design that decouples execution
from allocation tiles and dynamically reallocates SPM capacity
from saturated to memory-hungry models.
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Fig. 3. Conceptual comparison of unified tiles versus decoupled tiles.

III. DESIGN

A. Decoupled Tiling Architecture

Our approach separates allocation granularity from exe-
cution granularity to resolve the latency-locality trade-off in
multi-tenant NPUs. Figure 3 contrasts conventional unified
tiles with our decoupled design that nests fine-grain execution
sub-tiles within coarse-grain allocation tiles. While unified
tiling forces a choice between quick preemption (small tiles)
and good locality (large tiles), our approach maintains large
parent tiles in SPM for locality while executing smaller sub-
tiles that enable context switches at finer granularity, simul-
taneously preserving high locality and minimizing context-
switch overhead. The scheduler can preempt execution after
any sub-tile completes without flushing the entire parent tile
from SPM, enabling rapid tenant switching while preserving
accumulated intermediate results. For example, during matrix
multiplication, operand blocks loaded into the parent tile
can be reused across multiple sub-tile computations before
eviction, significantly reducing DRAM traffic compared to
conventional approaches that reload data for each small tile.

B. Capacity-Aware SPM Allocation

DNN models exhibit vastly different SPM sensitivity pro-
files, with some networks saturating at few megabytes while
others scaling almost linearly. We quantify these sensitivities
through offline grid searches over core count and SPM ca-
pacity for benchmark workloads, producing a lookup table
mapping 〈core count, SPM size〉 pairs to expected through-
put. From this data, we construct an SPM Yielding Matrix
that guides runtime allocation: the scheduler yields surplus
capacity from saturated layers to those with high marginal
gains. Despite potential underestimation of runtime overheads,
capacity-aware reallocation consistently improves aggregate
performance, establishing scratch-pad sensitivity as a powerful
scheduling dimension for multi-tenant NPUs.

IV. EVALUATION

A. Experimental Setup

Hardware platform. Our cycle-accurate simulator models a
Planaria-style [3] spatial NPU at 1 GHz, comprising four
32×32 PE arrays arranged in a 4×4 configuration backed by
Fission Pods. The chip integrates 12 MB SPM using weight-
stationary dataflow with 16-bit precision, providing 80 and 200
GB/s bandwidth with 100-cycle DRAM latency.
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Fig. 4. ANTT across six workload pairs with small, large, and decoupled
tiles under 80 GB/s and 200 GB/s memory bandwidth.
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Fig. 5. Normalized DRAM accesses under baseline partitioning versus SPM-
yielding.

Metric. We report Average Normalized Turnaround Time
(ANTT) = 1

n

∑n
i=1

Cmulti
i

Csingle
i

, where Csingle
i and Cmulti

i are cycle
counts for model i under single-tenant and multi-tenant ex-
ecution. Lower ANTT indicates better aggregate quality of
service. We additionally measure total DRAM accesses.
Workloads. Four convolutional networks comprise our bench-
mark: AlexNet (61M params), GoogLeNet (5M), MobileNet
(4.2M), and ResNet-34 (63.5M).

B. Performance

Figure 4 evaluates three tiling strategies—SMALL, LARGE,
and DECOUPLED—across dual-model workloads. At 80 GB/s,
decoupled tiling reduces ANTT by 6% on average with max-
imum gains for reconfiguration-heavy pairs (Go–Al, Mo–Al)
while trailing conventional approaches by only 4% in worst
cases. At 200 GB/s, mean benefits decrease to 0.8% as
DRAM penalties diminish, yet decoupling still provides up
to 16% improvements for bandwidth-sensitive workloads with
maximum degradation of 12%.

Figure 5 shows that dynamically reallocating SPM capacity
reduces DRAM accesses by 17% on average, peaking at 31%
for Go–Rn34. The Mo–Go pair shows negligible improve-
ment as both models saturate at modest SPM sizes. These
bandwidth-independent reductions translate directly to lower
DRAM energy and increased tenant headroom, though latency
benefits depend on double-buffering effectiveness.

V. CONCLUSION

We propose a multi-tenant NPU architecture–scheduler co-
design that decouples execution from allocation granularity
and dynamically manages SPM, improving efficiency.
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